Abstract:
In a self-referencing instrument for measuring electromagnetic radiation, a mounting member to which a sample can be coupled moves the sample such that, in a first position, the electromagnetic radiation impinges on the sample, and, in a second position, the electromagnetic radiation does not impinge on the sample. A detection unit receives the electromagnetic radiation from the sample and generates a sample signal when the sample is in the first position, and the detection unit receives the electromagnetic radiation from the source and generates a reference signal when the sample is in the second position. A processor coupled to the detection unit processes the reference signal and the sample signal. This results in a continuous, accurate reference measurement, and permits the instrument to efficiently compensate for error, while offering accurate measurements.
Abstract:
The present invention relates to an apparatus which can be inserted between the stack and a transceiver of a transmissometer to provide zero and span measurements using the primary light source from the transceiver. The apparatus includes a calibration device mounted between the transceiver and one side of the stack and within the path of the light beam. A zero reflector is mounted within the calibration device for movement back and forth between an inactive position and an active position within the path of the light beam to reflect the same amount of light back into the transceiver as the retro-reflector would across the stack when the stack is clear of smoke. In addition, means is connected to the zero reflector for accomplishing this movement. A span filter is also provided within the calibration device which is movable between an active position in the light beam path to provide an upscale reference calibration check. The invention further contemplates a method of using the apparatus to establish zero and upscale references during initial set-up, followed by periodic establishment of new values indicative of soiling of the transceiver windows.
Abstract:
The invention relates to monitoring equipment for smoke and/or fine particle emissions from fossil fuel systems, of the type where a beam of visible light is passed across a flue from a light source to a detector, a difference in the light intensity received by the detector from the known intensity of the source indicating absorption of light by smoke and/or fine particles in the flue, and the degree of difference indicating the level of smoke and/or fine particles. The objective of the invention is to provide monitoring equipment of the above type, of simpler, lower cost, more robust nature than has hitherto been provided. The objective is met by a construction comprising two units (1, 2) for location of opposite sides of a flue or chimney each unit comprising a light source, (L.sub.1, L.sub.2) a lens (4) and a light detector (D.sub.1, D.sub.2), the light from the light source of each said unit being directed by its lens across the flue or chimney in a divergence path, to be gathered by the lens of the opposite unit and directed to the detector in the opposite unit, the outputs from the detectors of each unit being combined to provide a reading of the degree of smoke and/or fine particulate material existing in the flue or chimney.
Abstract:
In a self-referencing instrument for measuring electromagnetic radiation, a mounting member to which a sample can be coupled moves the sample such that, in a first position, the electromagnetic radiation impinges on the sample, and, in a second position, the electromagnetic radiation does not impinge on the sample. A detection unit receives the electromagnetic radiation from the sample and generates a sample signal when the sample is in the first position, and the detection unit receives the electromagnetic radiation from the source and generates a reference signal when the sample is in the second position. A processor coupled to the detection unit processes the reference signal and the sample signal. This results in a continuous, accurate reference measurement, and permits the instrument to efficiently compensate for error, while offering accurate measurements.
Abstract:
A system for disabling an oximetric device when radiation-carrying channels are exposed to excess ambient radiation is disclosed. It includes a transmitter channel adjacent the sample to be measured, means for isolating the channel from the sample so that it does not carry radiation reflected from or transmitted through the sample, a detector for receiving the transmitted signal, if any, and means for disabling the output in response to the transmitted signal. Preferably, the transmitter channel runs parallel to other transmitter channels in the device, and is isolated from undue ambient light. The system preferably includes means for determining when the second transmitted signal exceeds background noise and the output is disabled when the second transmitted signal exceeds background noise. In general, the sample is a fluid, usually blood, passing through a cuvette adjacent the fiber-optic channels, the cuvette defining an area of radiation absorption adjacent the transmitter channel so that the transmitter does not carry reflected or transmitted radiation from the sample. Also disclosed is a fiber-optic sensor for measuring components of a composition by detecting transmitted or reflected, usually reflected, radiation including such a system, and the cuvette therefore. Finally, a method of disabling the output of an oximetric device when the fiber-optic channels are exposed to undue ambient radiation is disclosed.
Abstract:
An optical autocollimation measuring apparatus has a light transmitter-receiver arranged in a housing (15). An image of the light source (11) is formed in the objective (12) by a condensor (9) through the beam divider (20). The objective (12) in turn forms an image of the exit pupil of the condensor (9) in the plane of the retroreflector via the measuring path (13). The retroreflector (14) reflects the incident light beam substantially back on itself to the housing (15) of the light transmitter-receiver, where the received light beam is deflected by the beam divider (20) to a photoreceiver (21). A deflecting mirror (16) is located between the front objective (12) and the measuring path (13) and consists of two parts which are pivotable relative to one another, about a pivot axis (25) extending perpendicular to the optical axis (17), from an extended position into a position in which they are displaced by 90.degree. relative to one another. A suitable aperture diaphragm prevents the abutting edges of the two parts of the deflecting mirror being struck by the transmitted light beam.
Abstract:
The invention relates to a device for determining biological, chemical and/or physical parameters in living biological tissue, comprising an energy supply unit, a laser operating unit with at least one laser source directed at the biological tissue, at least one sensor unit for detecting the light scattered back and/or absorbed by the biological tissue, a control unit, a storing and processing unit and an interface for an external data processing unit. The method according to the invention includes execution of a calibrating phase for ascertaining a reference set (R) of reference vectors (Ri), in each case involving independently ascertaining a parameter (BZi), radiating unpolarized laser light onto the biological tissue and registering a measured value vector (Mi) from a series of optical measured variables and executing an interpolation phase for ascertaining an interpolation set (I) of interpolation vectors (Ik), in each case involving radiating unpolarized laser light onto the biological tissue and registering a measured value vector (Mk) from a back-scattered light intensity with a subsequent determination of an interpolated parameter (BKk) from the reference set (R).
Abstract:
A system for disabling an oximetric device when radiation-carrying channels are exposed to excess ambient radiation is disclosed. It includes a transmitter channel adjacent the sample to be measured, means for isolating the channel from the sample so that it does not carry radiation reflected from or transmitted through the sample, a detector for receiving the transmitted signal, if any, and means for disabling the output in response to the transmitted signal. Preferably, the transmitter channel runs parallel to other transmitter channels in the device, and is isolated from undue ambient light. The system preferably includes means for determining when the second transmitted signal exceeds background noise and the output is disabled when the second transmitted signal exceeds background noise. In general, the sample is a fluid, usually blood, passing through a cuvette adjacent the fiber-optic channels, the cuvette defining an area of radiation absorption adjacent the transmitter channel so that the transmitter does not carry reflected or transmitted radiation from the sample. Also disclosed is a fiber-optic sensor for measuring components of a composition by detecting transmitted or reflected, usually reflected, radiation including such a system, and the cuvette therefor. Finally, a method of disabling the output of an oximetric device when the fiber-optic channels are exposed to undue ambient radiation is disclosed.
Abstract:
A system for disabling an oximetric device when radiation-carrying channels are exposed to excess ambient radiation is disclosed. It includes a transmitter channel adjacent the sample to be measured, means for isolating the channel from the sample so that it does not carry radiation reflected from or transmitted through the sample, a detector for receiving the transmitted signal, if any, and means for disabling the output in response to the transmitted signal. Preferably, the transmitter channel runs parallel to other transmitter channels in the device, and is isolated from undue ambient light. The system preferably includes means for determining when the second transmitted signal exceeds background noise and the output is disabled when the second transmitted signal exceeds background noise. In general, the sample is a fluid, usually blood, passing through a cuvette adjacent the fiber-optic channels, the cuvette defining an area of radiation absorption adjacent the transmitter channel so that the transmitter does not carry reflected or transmitted radiation from the sample. Also disclosed is a fiber-optic sensor for measuring components of a composition by detecting transmitted or reflected, usually reflected, radiation including such a system, and the cuvette therefore. Finally, a method of disabling the output of an oximetric device when the fiber-optic channels are exposed to undue ambient radiation is disclosed.