摘要:
A method for frequency estimation in a power system. The method includes detecting a condition of the power system, applying a first estimation process to a voltage signal of the power system responsive to a normal condition being detected, and applying a second estimation process to a current signal of the power system responsive to a fault condition being detected. The condition of the power system is detected utilizing a protective device. The condition of the power system includes one of a normal condition and a fault condition.
摘要:
An idle tone dispersion device includes n FDSM (1) to FDSM (n), a phase adjustment unit which relatively adjusts a phase between a measured signal and a reference signal such that a phase of an idle tone is completely different, and generates and supplies n sets of output measured signals and output reference signals to each of the n FDSM (1) to FDSM (n), and an adder which adds output data of the n FDSM (1) to FDSM (n) and outputs a frequency delta-sigma modulation signal.
摘要:
A frequency-coefficient calculating unit calculates, as a frequency coefficient (fc), a value ((v21+v23)/(2v22)) obtained by normalizing, with a differential voltage instantaneous value (v22) at intermediate time, an average ((v21+v23)/2) of a sum (v21+v23) of differential voltage instantaneous values at time other than the intermediate time among differential voltage instantaneous value data (v21, v22, and v23) at three points representing an inter-distal end distance between voltage instantaneous value data at adjacent two points in voltage instantaneous value data at continuous at least four points extracted, out of voltage instantaneous value data obtained by sampling a measurement target alternating-current voltage at a predetermined data collection sampling frequency, at a gauge sampling frequency lower than the data collection sampling frequency and equal to or higher than a frequency of the alternating-current voltage.
摘要:
A frequency measuring and control apparatus includes a plurality of synchronized oscillators integrated in parallel into one programmable logic device.
摘要:
A system and method to detect the fundamental frequency of an electric input signal using a feedback control loop including a phase error detector, a loop controller, and a digitally controlled oscillator. The frequency detector may detect the fundamental frequency of an electric input signal and produce an output signal representing the fundamental frequency of the electric input signal. The frequency detector may further include a filter that may be coupled to the frequency detector output signal in order to remove spurious tones or noise from the output signal.
摘要:
A phase comparator (4) for detecting a phase difference between a first signal and a second signal, a first oscillating circuit (1) for supplying the phase comparator with a reference signal as the first signal, and a DDS (8) as a second oscillating circuit for outputting a signal according to an output of the above-mentioned phase comparator are provided.As for a filter-thickness measuring device using the PLL circuit as a frequency measurement circuit, a crystal oscillator (11) which is made of quartz etc. and connected to the first oscillating circuit is accommodated in a vacuum chamber (C). It is arranged that the frequency measurement circuit which constitutes the PLL circuit measures a film thickness of the film forming material based on a change of a natural frequency of a piezoelectric crystal, the change being caused by the film forming material deposited on the piezoelectric element in the vacuum chamber.
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
The present invention determines the resonant frequency of a sensor by adjusting the phase and frequency of an energizing signal until the frequency of the energizing signal matches the resonant frequency of the sensor. The system energizes the sensor with a low duty cycle, gated burst of RF energy having a predetermined frequency or set of frequencies and a predetermined amplitude. The energizing signal is coupled to the sensor via magnetic coupling and induces a current in the sensor which oscillates at the resonant frequency of the sensor. The system receives the ring down response of the sensor via magnetic coupling and determines the resonant frequency of the sensor, which is used to calculate the measured physical parameter. The system uses a pair of phase locked loops to adjust the phase and the frequency of the energizing signal.
摘要:
A method determines the frequency of an alternating input signal includes storing the input signal, sampling the input signal at a first sampling frequency, a first calculation and a first angular comparison of two phasors representing the input signal at two respective instants, as a function of the input signal sampled at the first sampling frequency, estimating the frequency of the input signal, and searching for a modification of frequency of the input signal. When a modification is detected the method includes, determining a second sampling frequency, sampling the stored input signal with the second sampling frequency, a second calculation and a second angular comparison of two phasors representing the input signal, at two respective instants, as a function of the input signal sampled at the second sampling frequency and of the stored input signal sampled at the second sampling frequency, and estimating the frequency of the input signal.