Abstract:
A communication device includes a first resistance connected between a first reference potential and a midway point of one of a pair communication lines connected to a coil, a second resistance and a third resistance arranged in series so as to be connected between a second reference potential different from the first reference potential and a midway point of the other one of the pair communication lines, and a switch configured to open or close a path between the first resistance and the first reference potential.
Abstract:
An optical element includes a base and many structures arranged at a fine pitch on a surface of the base, each of the structures being in the form of a projection or a depression, in which the structures constitute a plurality of arc tracks, and the structures in every three adjacent rows of the arc tracks are arranged in a tetragonal lattice pattern or a quasi-tetragonal lattice pattern.
Abstract:
Stable, macroscopic single-crystal chiral liquid crystal compositions are described. The compositions include a single-crystal chiral liquid crystal material on a patterned surface. The patterned surface seeds a particular crystallographic orientation at the substrate-liquid crystal interface. Also described are methods of forming the single-crystal chiral liquid crystal compositions.
Abstract:
The invention provides an electrical connector and a backlight module using that electrical connector. The electrical connector includes a body and two conducting lines. The body is provided with first and second connecting portions, the former of which has a first connecting surface and the latter has a second connecting surface. An invariable relative angle is defined between the first and second connecting surfaces. The conducting lines are coated on the first and second connecting surfaces without crossing each other. The backlight module includes a light guide plate, two LED light bars mounted to two respective light receiving edges of the light guide plate, and an aforesaid electrical connector connecting the LED light bars. The electrical connector is electrically connected with the LED light bars and fixes their relative positions. Besides, it is easy to install the electrical connector to connect the LED light bars firmly.
Abstract:
A display device includes a cover having an inner surface, and a clamping unit provided on the inner surface and having two spaced-apart clamping arms. A display panel includes a protruding portion protruding from a frame thereof, corresponding in position to the clamping unit, and formed with a through hole. The bezel includes a through hole formed in a bezel body thereof and registered with the through hole in the protruding portion. The shock absorbing positioner includes a positioning post protruding from a pad body thereof. The positioning post extends through the through holes in the bezel body and the protruding portion, and is clamped between the clamping arms, thereby fixing together the bezel, the display panel and the cover.
Abstract:
A display device includes a cover having an inner surface, and a clamping unit provided on the inner surface and having two spaced-apart clamping arms. A display panel includes a protruding portion protruding from a frame thereof, corresponding in position to the clamping unit, and formed with a through hole. The bezel includes a through hole formed in a bezel body thereof and registered with the through hole in the protruding portion. The shock absorbing positioner includes a positioning post protruding from a pad body thereof. The positioning post extends through the through holes in the bezel body and the protruding portion, and is clamped between the clamping arms, thereby fixing together the bezel, the display panel and the cover.
Abstract:
The invention provides an electrical connector and a backlight module using that electrical connector. The electrical connector includes a body and two conducting lines. The body is provided with first and second connecting portions, the former of which has a first connecting surface and the latter has a second connecting surface. An invariable relative angle is defined between the first and second connecting surfaces. The conducting lines are coated on the first and second connecting surfaces without crossing each other. The backlight module includes a light guide plate, two LED light bars mounted to two respective light receiving edges of the light guide plate, and an aforesaid electrical connector connecting the LED light bars. The electrical connector is electrically connected with the LED light bars and fixes their relative positions. Besides, it is easy to install the electrical connector to connect the LED light bars firmly.
Abstract:
In some embodiments, optical systems with a reflector and a lens proximate a light output opening of the reflector provide light output with high spatial uniformity and high efficiency. The reflectors are shaped to provide substantially angularly uniform light output and the lens is configured to transform this angularly uniform light output into spatially uniform light output. The light output may be directed into a spatial light modulator, which modulates the light to project an image.
Abstract:
A communication device includes a first resistance connected between a first reference potential and a midway point of one of a pair communication lines connected to a coil, a second resistance and a third resistance arranged in series so as to be connected between a second reference potential different from the first reference potential and a midway point of the other one of the pair communication lines, and a switch configured to open or close a path between the first resistance and the first reference potential.
Abstract:
A base device has a first waveguide positioned on a first base. The waveguide is at least partially defined by a ridge extending away from the first base. An auxiliary optical device has a second waveguide positioned on a second base. The second optical device is immobilized on the base device such that the second waveguide is between the first base of the first optical device and the second base of the auxiliary device. The first waveguide is optically aligned with the second waveguide such that the first waveguide and second waveguides can exchange optical signals.