Abstract:
The present disclosure provides a chemical mechanical polishing (CMP) system. The CMP system includes a pad designed for wafer polishing, a motor driver coupled with the pad and designed to drive the pad during the wafer polishing, and a controller coupled with the motor driver and designed to control the motor driver. The CMP system further includes an in-situ rate monitor designed to collect polishing data from a wafer on the pad, determine CMP endpoint based on a life stage of the pad, and provide the CMP endpoint to the controller.
Abstract:
The present disclosure provides a semiconductor manufacturing method. The method includes defining a plurality of time regions of pad life for a polishing pad in a chemical mechanical polishing (CMP) system; assigning a ladder coefficient to the polishing pad according to the plurality of time regions of pad life; defining a plurality of endpoint windows to the plurality of time regions, respectively, according to pad life effect; applying a CMP process to a wafer positioned on the polishing pad; determining a time region of a polishing signal of the wafer based on the ladder coefficient; associating one of the endpoint windows to the polishing signal according to the time region; and ending the CMP process at an endpoint determined by the endpoint window.
Abstract:
An algorithm uses offline metrology to control a process by passing information from an outer control loop to an inner control loop, extended Kalman filter estimator. The inner control loop operates online, and the outer control loop operates asynchronously with respect to the inner control loop. The online control loop is updated for each subsequent process. The offline metrology is optionally updated for each subsequent process.
Abstract:
A method of controlling polishing includes storing a base spectrum, the base spectrum being a spectrum of light reflected from a substrate after deposition of a deposited dielectric layers overlying a metallic layer or semiconductor wafer and before deposition of a non-metallic layer over the plurality of deposited dielectric layer. After deposition of the non-metallic layer and during polishing of the non-metallic layer on the substrate, measurements of a sequence of raw spectra of light reflected the substrate during polishing are received from an in-situ optical monitoring system. Each raw spectrum is normalized to generate a sequence of normalized spectra using the raw spectrum and the base spectrum. At least one of a polishing endpoint or an adjustment for a polishing rate is determined based on at least one normalized predetermined spectrum from the sequence of normalized spectra.
Abstract:
The present disclosure provides a semiconductor manufacturing method. The method includes defining a plurality of time regions of pad life for a polishing pad in a chemical mechanical polishing (CMP) system; assigning a ladder coefficient to the polishing pad according to the plurality of time regions of pad life; defining a plurality of endpoint windows to the plurality of time regions, respectively, according to pad life effect; applying a CMP process to a wafer positioned on the polishing pad; determining a time region of a polishing signal of the wafer based on the ladder coefficient; associating one of the endpoint windows to the polishing signal according to the time region; and ending the CMP process at an endpoint determined by the endpoint window.
Abstract:
An algorithm uses offline metrology to control a process by passing information from an outer control loop to an inner control loop, extended Kalman filter estimator. The inner control loop operates online, and the outer control loop operates asynchronously with respect to the inner control loop. The online control loop is updated for each subsequent process. The offline metrology is optionally updated for each subsequent process.
Abstract:
An algorithm uses offline metrology to control a process by passing information from an outer control loop to an inner control loop, extended Kalman filter estimator. The inner control loop operates online, and the outer control loop operates asynchronously with respect to the inner control loop. The online control loop is updated for each subsequent process. The offline metrology is optionally updated for each subsequent process.
Abstract:
A method of controlling polishing includes polishing a substrate, monitoring the substrate during polishing with an in-situ monitoring system, filtering a signal from the monitoring system to generate a filtered signal, and determining at least one of a polishing endpoint or an adjustment for a polishing rate from the filtered signal. The filtering includes modelling a plurality of periodic disturbances at a plurality of different frequencies using a plurality of disturbance states, modelling an underlying signal using a plant state, and applying a linear prediction filter to the plant state and the plurality of disturbance states to generate a filtered signal representing the underlying signal.
Abstract:
A method of controlling polishing includes storing a base spectrum, the base spectrum being a spectrum of light reflected from a substrate after deposition of a deposited dielectric layers overlying a metallic layer or semiconductor wafer and before deposition of a non-metallic layer over the plurality of deposited dielectric layer. After deposition of the non-metallic layer and during polishing of the non-metallic layer on the substrate, measurements of a sequence of raw spectra of light reflected the substrate during polishing are received from an in-situ optical monitoring system. Each raw spectrum is normalized to generate a sequence of normalized spectra using the raw spectrum and the base spectrum. At least one of a polishing endpoint or an adjustment for a polishing rate is determined based on at least one normalized predetermined spectrum from the sequence of normalized spectra.
Abstract:
An algorithm uses offline metrology to control a process by passing information from an outer control loop to an inner control loop, extended Kalman filter estimator. The inner control loop operates online, and the outer control loop operates asynchronously with respect to the inner control loop. The online control loop is updated for each subsequent process. The offline metrology is optionally updated for each subsequent process.