摘要:
A method of introducing an additive to a biological material using a supercritical fluid is disclosed. The method comprises placing the biological material in a processing chamber, adding an additive to the supercritical fluid to form a supercritical fluid-additive mixture, adding the supercritical fluid-additive mixture to the processing chamber, and pulsing the mixture in the processing chamber. A processing system for introducing an additive to a biological material using a supercritical fluid in accordance with the present invention comprises a processing chamber for housing the biological material, a vat for storing a processing fluid, a pump, a heating element, an inlet port, and a flow path.
摘要:
An improved method of implanting cells in the body of a patient includes positioning viable cells on a support structure. One or more blood vessels may be connected with the support structure to provide a flow of blood through the support structure. A support structure may be positioned at any desired location in a patient's body. The support structure may be configured to replace an entire organ or a portion of an organ. An organ or portion of an organ may be removed from a body cells and/or other tissue is removed to leave a collagen matrix support structure having a configuration corresponding to the configuration of the organ or portion of an organ. Alternatively, a synthetic support structure may be formed. The synthetic support structure may have a configuration corresponding to a configuration of an entire organ or only a portion of an organ.
摘要:
A method of producing a catalyst material with nano-scale structure, the method comprising: introducing a starting powder into a nano-powder production reactor, the starting powder comprising a catalyst material; the nano-powder production reactor nano-sizing the starting powder, thereby producing a nano-powder from the starting powder, the nano-powder comprising a plurality of nano-particles, each nano-particle comprising the catalyst material; and forming a catalyst precursor material from the nano-powder, wherein the catalyst precursor material is a densified bulk porous structure comprising the catalyst material, the catalyst material having a nano-scale structure.
摘要:
A pre-assembled orthopaedic implant adapted for improved gas sterilization. The implant includes a first component adapted for assembly with a second component such that a mating surface of the first component is in close proximity with a mating surface of the second component. At least one gas conduit associated with the mating surface of the first component facilitates a sterilizing gas to penetrate into and dissipate from the interface defined by the mating surfaces.
摘要:
A pre-assembled orthopaedic implant adapted for improved gas sterilization. The implant includes a first component adapted for assembly with a second component such that a mating surface of the first component is in close proximity with a mating surface of the second component. At least one gas conduit associated with the mating surface of the first component facilitates a sterilizing gas to penetrate into and dissipate from the interface defined by the mating surfaces.
摘要:
A system operating in an environment having an ambient pressure, the system comprising: a reactor configured to combine a plasma stream, powder particles and conditioning fluid to alter the powder particles and form a mixture stream; a supply chamber coupled to the reactor; a suction generator configured to generate a suction force at the outlet of the reactor; a fluid supply module configured to supply the conditioning fluid at an original pressure; and a pressure regulation module configured to: receive the conditioning fluid from the fluid supply module, reduce the pressure of the conditioning fluid from the original pressure to a selected pressure relative to the ambient pressure regardless of any changes in the suction force at the outlet of the reactor, and supply the conditioning fluid at the selected pressure to the supply chamber.
摘要:
An apparatus for cooling a reactive mixture, comprising: a reactor configured to form the reactive mixture; a quench chamber comprising a frusto-conical body having a wide end, a narrow end, and a quench region formed between the wide and narrow end, wherein the quench chamber is configured to receive the reactive mixture from the plasma reactor through a reactive mixture inlet into the quench region, to receive a conditioning fluid through at least one fluid inlet, and to flow the conditioning fluid into the quench region, wherein the frusto-conical body is configured to produce a turbulent flow within the quench region with the flow of the conditioning fluid into the quench region, thereby promoting the quenching of the reactive mixture to form a cooled gas-particle mixture; and a suction generator configured to force the cooled gas-particle mixture out of the quench chamber.
摘要:
A constricting chamber having first and second ends, the chamber comprising: an interior surface formed between the first and second ends, disposed circumferentially around and defining an interior space and a longitudinal axis of the chamber; a frusto-conical surface disposed between the first and second ends and narrowing as it extends away from the first end and into the second end; an ejection port disposed at the second end and substantially aligned with the longitudinal axis; a cover disposed at the first end, substantially perpendicular to the longitudinal axis, and comprising a center substantially aligned with the longitudinal axis; an injection port disposed on the cover proximate the center, and configured to receive a reactive mixture into the chamber; and an annular supply portion disposed circumferentially around the longitudinal axis and comprising supply port(s) configured to supply conditioning fluid into the chamber in an annular formation along the interior surface.
摘要:
The present invention provides processes for fixation of biological tissue and/or post-fixation treatment of such tissue that result in modified tissues with reduced susceptibility to in vitro calcification when used in prosthetic devices. The invention also relates to calcification resistant biological tissue and to methods of using such tissue.
摘要:
The surface of a device that is surgically implantable in living bone is prepared. The device is made of titanium with a native oxide layer on the surface. The method of preparation comprises the steps of removing the native oxide layer from the surface of the device and performing further treatment of the surface substantially in the absence of unreacted oxygen.