摘要:
A method of making glass is disclosed in which a flue gas that comprises water vapor is exhausted from a submerged combustion melter that is operated to discharge combustion products into a glass melt that results from the combustion of a mixture of hydrogen gas and an oxidant gas. Heat may be recovered from the exhausted flue gas to heat batch feedstock material fed to the melter, or water vapor in the exhausted flue gas may be condensed and returned to the melter for cooling purposes, or both. A glass-melting system is also disclosed that includes a submerged combustion melter, a batch feedstock material preheater in fluid communication with the submerged combustion melter and configured to heat batch feedstock material, a condenser in fluid communication with the batch feedstock material preheater, and a cooling water reservoir in fluid communication with the condenser and the submerged combustion melter.
摘要:
The present invention relates to a cover glass for a display, which is a glass plate having a first main surface and a second main surface. The cover glass contains, as represented by mol percentage based on oxides, from 50 to 75% of SiO2, from 5 to 20% of Al2O3, from 2 to 20% of Na2O, from 0 to 6% of K2O, from 0 to 15% of MgO, from 0 to 10% of a total amount (CaO+SrO+BaO) of CaO, SrO and BaO, from 0 to 5% of a total amount (ZrO2+TiO2) of ZrO2 and TiO2, from 0 to 10% of B2O3, and from 0 to 20% of Li2O. The cover glass has a ream minimum distance of 100 mm or more and 1,000 mm or less, and a ream period of 1 mm or more and 30 mm or less.
摘要:
Methods and apparatus for producing fibers from igneous rock, including basalt include heating igneous rock by electrical conductive coils to achieve an homogenous melt and forming homogenous fibers from the melt.
摘要:
A process and apparatus for manufacturing glass. A mixture of solid glass-forming materials comprising at least one fining agent are introduced into a doghouse located upstream of an elongated tank. The glass-forming materials are melted in the doghouse at a temperature at or above a fining-onset temperature of the at least one fining agent by application of heat from one or more submerged combustion burners. The resulting molten glass is relatively foamy and may comprise greater than 25 vol. % gas bubbles. The molten glass is directed from the doghouse into an upstream end of the tank where it is refined to produce molten glass having on average less than 20 seeds per ounce.
摘要:
Methods of processing molten material comprising the step (I) of flowing molten material through an interior of a conduit from a first station to a second station of a glass manufacturing apparatus and the step (II) of cooling the molten material within the interior of the conduit by passing a cooling fluid along an exterior of the conduit. The method further includes the step (III) of directing a travel path of the cooling fluid toward a vertical plane passing through the conduit. In further examples, a glass manufacturing apparatus comprises a first station, a second station, and a conduit configured to provide a travel path for molten material traveling from the first station to the second station. The glass manufacturing apparatus further comprises at least one baffle configured to direct a travel path of cooling fluid toward a vertical plane passing through the conduit.
摘要:
The present invention relates to a method for producing phase-separated glass, sequentially including a melting step of melting a glass, a phase separation step of separating phases in the glass, and a shaping step of shaping the glass, and to the phase-separated glass obtained by the production method.
摘要:
A metalloid such as silicon in the form of a preheated solid electrode is purified by a CEVAR purification process by producing an ingot with controlled heating and cool down after the preheated electrode is melted in a CEVAR furnace system using a short CEVAR open-bottomed crucible.
摘要:
A furnace for fining molten glass is provided in which glass flows in a substantially vertical direction prior to exiting the furnace. As it flows vertically, the glass is allowed to cool. This cooling, in turn, allows the glass to be removed from the furnace through a narrow passageway without producing excessive wear of the passageway. Preferably, vertical flow of the molten glass at the exit end of the furnace is produced across the furnace's full width. In this way, the molten glass does not stagnate within the furnace and undesirable scums on the top surface of the glass are avoided. In certain preferred embodiments, the vertical flow is achieved by a trough which has sloped sides and which connects with and extends downward from the bottom surface of the furnace.
摘要:
Molten glass is conditioned to achieve a desired thermal distribution suitable for feeding the glass to a forming process. The molten glass is fed to the inlet end of a conditioning zone of a tank and glass flow through the conditioning zone is established in a direction towards a remote outlet from that zone with substantially no return flow. The glass is selectively cooled adjacent the inlet to the conditioning zone to achieve a desired temperature profile through the depth and width of a transverse cross section adjacent the conditioning zone inlet so that on flowing through that zone the further conditioning completes transformation of the glass to a state suitable for feeding to the forming process. The cooling is effected at a position selected in dependence on the temperature distribution within the glass and the required temperature profile by passing cooling fluid through at least one fluid cooled pipe immersed in the molten glass located in the forward flowing body of the glass.
摘要:
Adjustable, thin, fluid-cooled radiation targets are provided for selectively cooling the center surface portion of a molten glass stream in a glass making furnace forehearth. These radiation targets, which are generally of truncated triangular shape when viewed from an end in a direction parallel to the glass stream, may be arranged in tandem along the glass stream center surface portion, with each target having a plurality of connected wall panels defining a low-profile-closed chamber including a top portion spaced a substantial distance below the forehearth roof and inwardly converging side portions spaced a substantial distance from the glass stream edges. A plurality of spaced baffles within the closed chamber, and together therewith, define a circuitous fluid passageway having fluid entry and exit ports on the opposite ends thereof. Means are provided for supplying and removing a cooling fluid and further means control the degree of cooling imparted by the radiation target. A method for cooling the glass surface center portion includes positioning the radiation targets within a preselected region above the glass surface center portion and controlling the degree of cooling of the radiation targets.