摘要:
The invention relates to a method for synthesizing a family of zeolite materials, grouped together under the name ITQ-16, in an OHnull medium and in the absence of fluorides and to the catalytic applications thereof. The zeolite ITQ-16 family of materials is characterized by having different proportions of distinct polymorphs A, B and C described as possible intergrowths in the Beta zeolite and, therefore, the X-ray diffraction patterns of said family are different from that described for the Beta zeolite. In its calcinated form, zeolite ITQ-16 has the following empirical formula: x(MXO2):tTO2:gGeO2:(1nullg)SiO2, wherein T is one or more elements having null4 oxidation status and different from Ge and Si; X is one or more elements having null3 oxidation status; and M can be Hnull or one or more inorganic cations with a nulln charge.
摘要:
A process for producing cumene is provided which comprises the step of contacting benzene and propylene under at least partial liquid phase alkylating conditions with a particulate molecular sieve alkylation catalyst, wherein the particles of said alkylation catalyst have a surface to volume ratio of about 80 to less than 200 inchnull1.
摘要:
A catalyst for the production of alkenylaromatics from alkylaromatics, wherein the catalyst is predominantly iron oxide, an alkali metal compound and a small amount of a source for palladium or platinum. Additional components of the catalyst may include compounds based on cerium, molybdenum, tungsten and other such promoters. Also a process for the production of alkenylaromatics from alkylaromatics using this catalyst.
摘要:
The present invention relates to a method for catalytic dehydrogenation of alkylaromatic hydrocarbons and more particularly, to a method for catalytic dehydrogenation of alkylaromatic hydrocarbons using carbon dioxide as a soft oxidant in the presence of a heterogeneous catalyst comprising both vanadium and iron, which allows operation at a lower reaction temperature due to improved thermodynamic equilibrium and provides an enhanced conversion of hydrocarbons and energy saving.
摘要:
A process for the alkylation of aromatics with olefins using a solid catalyst is disclosed, wherein the olefin ratio and/or the maximum olefin concentration in the alkylation catalyst bed is maintained less than an upper limit. Such operation can decrease the catalyst deactivation rate and the formation of diphenylalkanes. This invention is applicable to processes for the production of a wide variety of commercially important alkylated aromatics, including ethylbenzene and cumene.
摘要:
This invention relates to a process for producing zeolite-bound high silica zeolites and the use of the zeolite-bound high silica zeolite produced by the process for hydrocarbon conversion. The process is carried out by forming an extrudable paste comprising a mixture of high silica zeolite in the hydrogen form, water, silica, and optionally an extrusion aid, extruding the extrudable paste to form silica-bound high silica zeolite extrudates, and then converting the silica of the binder to a zeolite binder. The zeolite-bound high silica zeolite produced by the process comprises high silica zeolite crystals that are bound together by zeolite binder crystals. The zeolite-bound high silica zeolite finds particular application in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportionation of toluene, isomerization, and transalkylation reactions.
摘要:
1. A process for alkylating aromatics comprises: i) contacting a feed containing alkylatable aromatic, e.g., benzene, under liquid phase alkylating conditions with an alkylating agent, e.g., ethylene, in the presence of an alkylation catalyst comprising a porous crystalline material, e.g., MCM-22, to provide an alkylated aromatic product during which contacting said catalyst becomes at least partially deactivated by sorbing catalyst poisons present in said feed; ii) treating said at least partially deactivated catalyst in situ by contacting with at least one polar compound, e.g., water or acetic acid, having a dipole moment of at least 0.05 Debyes under conditions of temperature and pressure employed in said liquid phase alkylating conditions which are sufficient to at least partially desorb said catalyst poison from said catalyst; and iii) collecting said alkylated aromatic product.
摘要:
A process for preparing branched alkyl aromatic hydrocarbons, which process comprises contacting branched olefins with an aromatic hydrocarbon under alkylating conditions, which branched olefins have been obtained by a process which comprises dehydrogenating an isoparaffinic composition over a suitable catalyst which isoparaffinic composition has been obtained by hydrocracking and hydroisomerization of a paraffinic wax and which isoparaffinic composition comprises paraffins having a carbon number in the range of from 7 to 35, of which paraffins at least a portion of the molecules is branched, the average number of branches per paraffin molecule being at least 0.5 and the branching comprising methyl and optionally ethyl branches; a process for preparing (branched-alkyl)arylsulfonates, comprising sulfonating branched alkyl aromatic hydrocarbons which branched alkyl aromatic hydrocarbons have been prepared by the said process for preparing branched alkyl aromatic hydrocarbons; and branched alkyl aromatic hydrocarbon compositions and (branched-alkyl)arylsulfonate compositions which are obtainable by the processes so defined.
摘要:
The present invention relates to a process for the preparation of dimethylcumenes comprising alkylating a substrate comprising of one or more xylene isomers with an alkylating agent in the presence of a solid acid zeolite catalyst selected from ultrastable zeolite Y (Si/Alnull5 to 50) and Beta (Si/Alnull10-120), and separating the products formed in vapour phase.
摘要翻译:本发明涉及一种制备二甲基枯烯的方法,包括在选自超稳沸石Y(Si / Al = 5〜50)的固体酸沸石催化剂存在下,用烷基化剂将含有一种或多种二甲苯异构体的底物烷基化, 和β(Si / Al = 10-120),并分离蒸气形成的产物。
摘要:
The alkylation of benzene-containing feedstock over a zeolite beta alkylation catalyst which is formulated with a silica binder and has an average regeneration coefficient of at least 95% for at least three regenerations. The alkylation reaction is carried out in the liquid phase or supercritical region with a C2-C4 alkylating agent, specifically ethylene. The catalyst exhibits a regeneration coefficient of at least 95% after ethylation of the benzene with ethylene at a benzene/ethylene mole ratio of less than 10. The ethylation of benzene occurs at an initial designated primary activity. The operation of the reaction zone is continued until the activity of the catalyst for the ethylation of benzene decreases by a value of at least 0. 1% and not more 1% from the initial designated primary activity. The operation of the reaction for alkylation is terminated and a regeneration procedure is instituted in which the catalyst is regenerated in an oxidizing environment at an average temperature of no more than 500null C. At the conclusion of the regeneration procedure, the operation of the alkylation zone is reinstituted with the reaction zone again operated under conditions as described above followed by regeneration.