Abstract:
The invention described herein provides for novel nitric oxide-releasing polymers that comprise at least two adjacent units derived from acrylonitrile monomer units and containing at least one carbon-bound diazeniumdiolate. The diazeniumdiolated acrylonitrile-derived polymers can be used in medical devices therapeutically. Accordingly, the invention also provides a method of treating a biological disorder and a method of promoting angiogenesis that includes administering a medical device comprising a nitric oxide-releasing polymer comprising at least two adjacent units of acrylonitrile before exposure to nitric oxide and at least one nitric oxide releasing N2O2− group, wherein the N2O2− group is attached directly to the polyacrylonitrile backbone, to a specific location on or within the mammal in an amount effective to treat the biological disorder or promote angiogenesis.
Abstract translation:本文所述的本发明提供了新一代释放氧化物的聚合物,其包含至少两个衍生自丙烯腈单体单元并且含有至少一个碳键的二氮烯鎓二硫醇盐的相邻单元。 二氮烯二烯丙酯衍生的聚合物可用于医疗器械。 因此,本发明还提供一种治疗生物学障碍的方法和促进血管发生的方法,其包括在暴露于一氧化氮和至少一种硝酸之前施用包含含有至少两个相邻单元的丙烯腈的一氧化氮释放聚合物的医疗装置 氧化物释放N2O2-基团,其中N 2 O 2基团直接连接到聚丙烯腈骨架上,以有效治疗生物学障碍或促进血管发生的量到达哺乳动物上或哺乳动物内的特定位置。
Abstract:
An electrochemical apparatus includes an electrolyte, where the electrolyte includes a carboxylate compound and fluoroethylene carbonate (FEC). Based on a total weight of the electrolyte, percentages of the carboxylate compound and FEC are w1 and w2 respectively, where 5%≤w1≤60%, 2%≤w2≤12%, and 2≤w1/w2≤20. The electrochemical apparatus delivers excellent fast charging performance and high-temperature interval cycle performance.
Abstract:
An electrolyte, including: a compound of Formula I, and at least one of a compound of Formula II or a compound of Formula III, R1, R2, R3 and R4 are each independently selected from hydrogen, fluoro, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C12 aryl, substituted or unsubstituted C1-C10 alkoxy, or substituted or unsubstituted C6-C12 aryloxy, wherein when substituted, the substituent is fluoro, cyano or C1-C10 alkyl; and a, d and f are each independently selected from an integer from 1 to 5, and b, c, e, g, h and i are each independently selected from an integer from 0 to 5.
Abstract:
An electrolyte including an additive of compound of formula I, wherein n is an integer ranging from 0 to 10; R1 and R2 are each independently selected from a substituted or unsubstituted C1-C10 alkylidene group, a substituted or unsubstituted C2-C10 alkenylene group, or a substituted or unsubstituted C1-C10 alkyleneoxy group; Ai selected from CH, C, N, S, O, B or Si; A2 is selected from CH—R3, N—R3, S, O, B—R3 or SiH—R3; A3 selected from CH2, CH, C, N, S, O, B or Si; R3 is selected from hydrogen, halogen, a substituted or unsubstituted C1-C10 alkyl group, or a substituted or unsubstituted C3-C10 cycloalkyl group; Xi is selected from a substituted or unsubstituted C1-C10 alkylidene group, a substituted or unsubstituted C2-C10 alkenylene group, ═Rc═, or ═Rc—, wherein Rc is selected from a substituted or unsubstituted C2-C6 alkylidene group.
Abstract:
The present application provides an electrolyte and an electrochemical device. The electrolyte according to the present application comprises a carboxylate, a barbituric acid compound and a nitrile compound. Adding a barbituric acid compound and a nitrile compound of particular structure to an electrolyte containing a carboxylate solvent can significantly improve the rate performance of an electrochemical device, and mitigate capacity loss after storage at room temperature, and cycle fading and gas generation at high-temperature of the electrochemical device.
Abstract:
A process for electrochemically coupling anions of organic radicals to form multifunctional compounds having the general formula ##STR1## in which R.sub.1 and R.sub.2 are independently selected from --CN, CO.sub.2 Et, --R .sub.4 CH.sub.2 Et, --CO.sub.2 R.sub.4, and --COCH.sub.3 ; R.sub.3 is Br, H, or Et, and R.sub.4 is C.sub.1-12 alkyl; and the novel compounds per se.
Abstract:
An electrolyte including an additive of compound of formula I,
wherein n is an integer ranging from 0 to 10; R1 and R2 are each independently selected from a substituted or unsubstituted C1-C10 alkylidene group, a substituted or unsubstituted C2-C10 alkenylene group, or a substituted or unsubstituted C1-C10 alkyleneoxy group; A1 selected from CH, C, N, S, O, B or Si; A2 is selected from CH—R3, N—R3, S, O, B—R3 or SiH—R3; A3 selected from CH2, CH, C, N, S, O, B or Si; R3 is selected from hydrogen, halogen, a substituted or unsubstituted C1-C10 alkyl group, or a substituted or unsubstituted C3-C10 cycloalkyl group; X1 is selected from a substituted or unsubstituted C1-C10 alkylidene group, a substituted or unsubstituted C2-C10 alkenylene group, ═Rc═, or ═Rc—, wherein Rc is selected from a substituted or unsubstituted C2-C6 alkylidene group.
Abstract:
An electrolyte includes diglycolic anhydride and a trinitrile compound, with which the cycle performance and the high-temperature stability under over-discharge conditions of lithium-ion batteries are significantly improved. The electrolyte includes a compound of Formula I; and at least one of a compound of Formula II or a compound of Formula III; R1, R2, R3 and R4 are each independently selected from hydrogen, halo, substituted or unsubstituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl, substituted or unsubstituted C2-C10 alkynyl, substituted or unsubstituted C6-C12 aryl, substituted or unsubstituted C1-C10 alkoxy, or substituted or unsubstituted C6-C12 aryloxy, wherein when substituted, the substituent is halo, cyano, or C1-C10 alkyl; and a, d and f are each independently selected from an integer from 1 to 5, and b, c, e, g, h and i are each independently selected from an integer from 0 to 5.
Abstract:
The invention concerns ionic compounds in which the anionic load has been delocalized. A compound disclosed by the invention is comprised of an amide or one of its salts, including an anionic portion combined with at least one cationic portion M+m in sufficient numbers to ensure overall electronic neutrality; is the compound is further comprised of M as a hydroxonium, a nitrosonium NO+, an ammonium —NH4+, a metallic cation with the valence m, an organic cation with the valence m, or an organometallic cation with the valence m. The anionic portion matches the formula RF—SOx—N-Z, wherein RF is a perfluorinated group, x is 1 or 2, and Z is an electroattractive substituent. The compounds can be used notably for ionic conducting materials, electronic conducting materials, colorants, and the catalysis of various chemical reactions.
Abstract:
The invention relates to a continuous process, carried out in two steps, for the cyanoalkylation of compounds having one or more NH functions by reaction thereof with carbonyl compounds and hydrocyanic acid, in which the first step is carried out without pressure at a temperature which is below the boiling point of the reaction mixture.