Abstract:
Method and apparatus for accelerating micro particles for use in delivering DNA or a solid drug in which a shockwave is generated by applying a short pulse energy to a surface of a metal foil to be absorbed and cause vaporization and plasmatization of the metal foil. A jet is generated by a sudden expansion of metal gas and thereby the shockwave is generated on a surface of an opposite side of the metal foil on which the micro particles are arranged.
Abstract:
In the present invention, viruses, plasmids or both are constructed which contain viral DNA, at least one head-to-head ITR junction, and optionally, recombinase recognition sites positioned such that site-specific recombination between recombinase recognition sites in separate plasmids results in generation of infectious viral DNA at high-efficiency in cotransfected host cells that have been engineered to express a site-specific recombinase. Because of the high-efficiency and specificity of the Cre enzyme, suitably engineered plasmids can be readily recombined to produce infectious virus at high-efficiency in cotransfected 293 cells, without, at the same time, producing wild-type adenovirus, with the attendant problems for removal thereof. Use of recombinases besides Cre and recombinase recognition sites besides lox sites, and use of cells other than 293 cells are also disclosed and enabled, as are kits incorporating the site-specific vector system, as well as compositions and methods for using such compositions as vaccines or in gene therapeutic applications. Enhancements in the efficiency of both site-specific and homologous recombination are provided by inclusion of at least one head-to-head ITR junction.
Abstract:
The present invention is directed to nucleotide sequences coding for a bacterial enolase enzyme. These sequences may be used in improved methods for the fermentative preparation of amino acids using coryneform bacteria.
Abstract:
The present invention provides a method of transfer of a gene of interest from a first vector to a product vector comprising contacting a first and second vector in vitro with a site-specific recombinase so as to generate a co-integrate vector comprising the components of the first and second vector, and introducing the co-integrate vector to a prokaryotic host cell so as to generate a product vector by rolling circle replication, comprising the gene of interest.
Abstract:
Described is the characterization and the use of strong viral promoters for expressing genes, in bacteria and fungi, in particular yeasts. The invention is based on the surprising finding that CFDV DNA (coconut foliar decay virus DNA) and CFDV DNA fragments contain a region which is active as promoter even in bacteria and fungi, in particular yeasts, although they are derived from a virus which infects monocotyledonous plants. The activity of the promoters described in E. coli is distinctly higher than that of the CaMV 35S promoter, which is also active in bacteria.
Abstract:
High throughput DNA sequencing vectors for generating nested deletions using enzymatic techniques and/or transposition-based techniques are disclosed. Methods of constructing contigs of long DNA sequences and methods of generating nested deletions are also disclosed. A truncated lacZ derivative useful in measuring the copy number of the lacZ derivative in a host cell is also disclosed.
Abstract:
Provided is a method for introducing a substance into a cell, which method comprises: (a) generating one or more bubbles of a gas in a liquid medium comprising the cell, the bubbles being capable of forming a hole in the surface of the cell when one or more bubbles interact with the cell; and (b) introducing the substance into the cell.
Abstract:
The present invention relates to a process for targeted replacement of at least a part of an endogenous gene by at least a part of a foreign gene or targeted insertion of at least a part of a foreign gene at a targeted site in an endogenous gene in a cell by homologous recombination. This process includes (A) providing a vector which contains (1) at least a part of the foreign gene which is heterologous with respect to the endogenous gene; (2) a first flanking DNA sequence homologous to a first genomic sequence situated on one side of the part of the endogenous gene to be replaced or the targeted site; and (3) a second flanking DNA sequence homologous to a second genomic sequence situated on the other side of the part of the endogenous gene to be replaced or the targeted site, the foreign gene being located between the first and second flanking DNA sequences and is complementary to the part of the endogenous gene to be replaced; (B) transfecting a cell with the vector; (C) and selecting a transfected cell that contains the foreign gene at the targeted site or where the part of the endogenous gene is to be replaced.
Abstract:
A synthetic polynucleotide and a method are disclosed for selectively expressing a protein in a target cell or tissue of a mammal. Selective expression is effected by replacing at least one existing codon of a parent polynucleotide encoding a protein of interest with a synonymous codon to produce a synthetic polynucleotide having altered translational kinetics compared to the parent polynucleotide. The synonymous codon is selected such that it has a higher translational efficiency in the target cell or tissue relative to one or more other cells or tissues of the mammal.