摘要:
A single crystal pulling apparatus including: a remelting detection apparatus which detects that remelting of a lower end portion of the semiconductor single crystal is completed from a change in weight of the semiconductor single crystal when the lower end portion of the semiconductor single crystal is immersed in the melt to be remolten by using the wire; and a lowermost end detection apparatus which detects a lowermost end of the semiconductor single crystal from a position where no current flows between the semiconductor single crystal and the melt when the semiconductor single crystal is taken up with the use of the wire while applying a voltage between the semiconductor single crystal and the melt by applying a voltage between the crucible and the wire.
摘要:
In accordance with the present invention, taught is a high purity germanium crystal growth method utilizing a quartz shield inside a steel furnace. The quartz shield is adapted for not only guiding the flow of an inert gas but also preventing the germanium melt from contamination by insulation materials, graphite crucible, induction coil and stainless steel chamber. A load cell provides automatic control of crystal diameter and helps to ensure exhaustion of the germanium melt. The method is both convenient and effective at producing high purity germanium crystals by relatively low skilled operators.
摘要:
When pulling and growing a single crystal from a raw material melt by the Czochralski method, a boundary between the single crystal and the raw material melt is imaged by an optical sensor, and also the weight of the single crystal is measured by a weight sensor, a diameter value of the single crystal is calculated on the basis of first measured values of the diameter of the single crystal derived from image data captured by the optical sensor and second measured values of the diameter of the single crystal derived from weight data captured by the weight sensor, and a pulling rate of the single crystal and the temperature of the raw material melt are adjusted on the basis of the calculated diameter value to thereby control the diameter of the single crystal, and thus it is possible to accurately measure the diameter of a growing single crystal.
摘要:
The present invention is directed toward a melt level detection system for detecting the level of the melt surface in crystal growing systems that utilize a crucible containing a pool of melt from which a seed is withdrawn to grow the crystal. The detection system utilizes a light source for directing a light beam at the melt, and a light detection apparatus positioned on the other side of the melt for receiving the beam of light that is reflected off of the melt. The detection system utilizes a single element linear detector that provides output signals relating to whether the light beam is illuminating the detector, and where on the detector the illumination occurs. A computer system is utilized to implement an algorithm that processes the output signals from the detector which are continually sampled over time. The algorithm disregards the location data sent from the detector if it determines that the light beam was not incident on the detector for a given sample. By analyzing location data only for samples generated when the light beam was incident on the detector, the algorithm determines an average location of the melt level for a predetermined number of samples and assumes that this average is representative of the location of the actual melt level.
摘要:
The present invention relates to a method and apparatus for mono-crystalline growth of a dissociative compound semiconductor. The method, which is based on the Czochralski method, includes the following steps. First, a first volatile component material and second material of the dissociative compound semiconductor are prepared. The first material is placed on the bottom of an inner air-tight vessel which is contained in an outer air-tight vessel. The second material is contained in a crucible supported in the inner vessel by a lower shaft extending from the inside to the outside of the inner vessel. The first material is, next, heated for evaporating so as to react with the second material. Therefore, the dissociative compound semiconductor is synthesized in the crucible. Then, temperature of a furnace installed on the inner vessel is adjusted so that the pressure of the gas of the first volatile component material in the inner vessel is controlled. A single crystal is pulled up from the melt by an upper shaft extending from inside to outside of the inner vessel, thereby the single crystal is grown. The improvement is that the pulling-up step includes the steps of: measuring the weight of the growing crystal, the weight influenced by a difference between the interior pressure of the inner vessel and a pressure outside of the inner vessel; correcting the measured weight of the crystal for the error due to the pressure difference, thereby obtaining an accurate estimate of the weight of the crystal; and controlling a diameter of the growing crystal on the basis of the weight estimate of the crystal.
摘要:
Methods of growing crystals by the Czochralski method are provided in which a member having a central vertical passageway extending through it is floated on the melt, and the crystallization is caused to take place within this passageway. The passageway may be parallel sided or tapering from top to bottom and is such that the melt does not wet the walls of the passageway. Excellent diameter control of the grown crystal is obtainable, and since the member floats on the melt during crystallization, its position follows changes in the level of the melt as the material is pulled from the melt. In one embodiment, the member is porous and fluid is forced through the porous wall of the passageway from a cavity within the member to form a barrier to keep the melt out of contact with the wall of the passageway. In another embodiment, a liquid encapsulant is used, which forms a coating over the whole surface of the floating member including the wall of the passageway. The floating member can be made from a number of different materials, including graphite, silicon nitride, silicon carbide, boron nitride, silica and Beryllia. The crystal may be rotated as pulled, in which case a centering device may be provided to maintain the axis of the passageway coincident with the axis of rotation of the crystal.
摘要:
Apparatus for the closed-loop controlled growth of crystalline material by the Czochralski technique includes means for establishing a melt of a given crystallisable material, means for pulling a crystal from said melt when established, said means for pulling incorporating a rigid elongated pulling member defining a crystal pulling axis, means for rotating said pulling member about said crystal pulling axis and a weighing cell located at the end of said pulling member distant from said means for establishing a melt and capable of providing, for the purpose of closed-loop control of said crystal pulled, a signal related to the force along said crystal pulling axis on the pulling member.The weighing cell is preferably one of the kind having a spring and a transducer arranged to produce an electrical output related to the tension of the spring. The pulling member is preferably freely suspended from the weighing cell by a coupling which allows the pulling member to be rotated without rotating the weighing cell.
摘要:
Disclosed is an ingot growing apparatus. The ingot growing apparatus according to the embodiment of the present invention includes a growth furnace in which a main crucible is disposed, wherein the main crucible accommodates molten silicon to grow an ingot, a preliminary crucible which receives a solid silicon material, melts the solid silicon material, and supplies molten silicon to the main crucible, a measurement unit which is installed to pass through the growth furnace and measures a change in level of the surface of the molten silicon in the main crucible, and a control unit which controls supply of the molten silicon in the preliminary crucible to the main crucible on the basis of the measured change in the level of the surface of the molten silicon.
摘要:
Provided is a silicon crystalline material, which is manufactured by a CZ method to be used as a material bar for manufacturing a silicon single crystal by an FZ method and has a grasping section for being loaded in a crystal growing furnace employing the FZ method without requiring mechanical processing. A method for manufacturing such silicon crystalline material is also provided. The silicon crystalline material is manufactured by the silicon crystal manufacturing method employing the CZ method and is provided with the grasping section, which is manufactured in a similar way as a shoulder portion, a straight body portion and a tail portion in a silicon crystal growing step employing the CZ method, and is loaded in a single crystal manufacturing apparatus employing the FZ method to grow single crystals. A seed-crystal used in the silicon crystal manufacture employing the CZ method is used as the grasping section. The grasping section is manufactured by temporarily changing crystal growing conditions to form a protruding section or a recessed section on the outer circumference surface of the straight body section or by forming a dent on the shoulder portion of the straight body portion, at the time of manufacturing the silicon crystal by the CZ method.
摘要:
An apparatus for measuring the weight of a crystal in a cable-type crystal pulling apparatus. A cable winding mechanism of the crystal pulling apparatus includes a guide pulley which is supported by a load plate and which changes the direction of the cable by 180 degrees, and a winding drum 8 which is disposed on a base plate and onto which the cable is wound. The load plate, on which a load due to pulling acts, is supported by a plurality of small-load load cells so that the load is equally distributed to the small-load load cells. Thus, the weight measuring apparatus can have a simple and low-cost structure, and the accuracy of measurement can be improved.