Abstract:
A gasification system that includes a gasification reactor chamber having perforated conduits or an inner lining that increases the exposed surface area of waste materials to gasification conditions, thereby decreasing gasification temperature, time, and cooling period between subsequent gasification procedures. After an aspirator withdraws and oxidizes fuel gas from the reactor chamber, a flare assembly combusts the mixed fuel gas to provide power or heat to at least one heat recovery device. The at least one heat recovery device recaptures thermal energy entrained in the exhaust, thereby reducing exhaust temperature and eliminating the need for an exhaust stack. An absorber purifies the exhaust and an extractor removes carbon dioxide. A portion of the removed carbon dioxide may be used for industrial purposes or for supporting vegetation. At least a portion of the remaining exhaust is returned to the reactor chamber as recycled process gas, thereby completing a closed-loop system.
Abstract:
An installation for generating power, comprising a main combustion chamber for burning fossil fuels, having means for generating steam; at least one thermal pre-processing chamber for processing carbonaceous materials; and a guiding duct for guiding the flue gases of at least one thermal pre-processing chamber to the main combustion chamber. The airflow in the thermal pre-processing chamber is toroidal. The thermal pre-processing chamber comprises an annular series of blades, a device for generating an air flow through the series of blades, a burner located under the series of blades, a cone shaped element in the center of the series of blades. The guiding duct has particle removal means, which are arranged to remove particles down to a size wherein the particles do not disturb processes in the main combustion chamber.
Abstract:
An overfire air injector for use in a fossil fuel-fired combustion device includes a cylindrical nozzle having an outlet end formed with a step diffuser comprising one or more radial steps that enlarge the outlet end of the nozzle. An atomizer lance may be mounted within the nozzle, having a discharge orifice at the outlet end of the nozzle, for supplying a reducing agent to the overfire air to reduce NOx emissions.
Abstract:
A furnace design that combines the benefits of oxygen enriched combustion, intense flame radiation, highly preheated combustion air, exhaust gas recirculation, buoyancy driven flows and NOx reburn chemistry in a single unit to significantly reduce energy consumption and pollutant formation. The furnace also allows burning low calorie fuels and fuels of different types. It substantially increases the level of radiation heat transfer and its uniformity, thereby enhancing furnace productivity and provides an oxygen free atmosphere to prevent oxidation of materials being heated.
Abstract:
In an apparatus for heating high-temperature air for use in recovering, by heat exchange, the heat of an exhaust gas of elevated temperature generated from an apparatus for disposing of wastes, prolonged service life, improved working efficiency, improved efficiency of heat recovery on heat exchange are attainable with least thermal deformation and reduced dust deposition. Solving Means In the apparatus for heating high-temperature air located in a gas atmosphere of elevated temperature, an air to be heated and caused to flow through a heat transfer conduit is heated upon heat exchange with the gas of elevated temperature. The heat transfer coduit is constructed with a heat transfer pipe in which the air to be heated is flowed, and a refractory protective pipe held in coaxially covered relation to the heat transfer pipe with a gapping defined between both pipes. The refractory protective pipe is formed to be angular when seen sectionally, and the heat transfer pipe is disposed in a plural number and secured in face-to-face contact with adjoining heat transfer pipes and one sectionally angular face of the refractory protective pipe.
Abstract:
A biomass gasification system for efficiently extracting heat energy from biomass material. The biomass gasification system includes a primary combustion chamber, a rotating grate within the primary combustion chamber for supporting the biomass during gasification, a feeder unit in communication with the primary combustion chamber for delivering biomass, a secondary combustion chamber fluidly connected to the primary combustion chamber, an oxygen mixer positioned between the primary combustion chamber and the secondary combustion chamber, a heat exchanger and an exhaust stack.
Abstract:
A gasification system that includes a gasification reactor chamber having perforated conduits or an inner lining that increases the exposed surface area of waste materials to gasification conditions, thereby decreasing gasification temperature, time, and cooling period between subsequent gasification procedures. After an aspirator withdraws and oxidizes fuel gas from the gasification reactor chamber, a flare assembly combusts the mixed fuel gas to provide power or heat to at least one heat recovery device. The at least one heat recovery device recaptures thermal energy entrained in the exhaust, thereby reducing exhaust temperature and eliminating the need for an exhaust stack. An absorber purifies the exhaust and an extractor removes carbon dioxide. A portion of the removed carbon dioxide may be used for industrial purposes or for supporting vegetation. At least a portion of the remaining exhaust is returned to the gasification reactor chamber as recycled process gas, thereby completing a closed-loop system.
Abstract:
An energy conversion system which comprises a solid fuel fed combustor system having a first chamber portion with an inlet feed for feeding a metered amount of a solid fuel thereto, a first burner stage having a first traveling conveyor firebelt, a metered amount of air introduced in progressively increasing proportions along the length of the first traveling conveyor. A second burner stage having a second traveling conveyor firebelt with air introduced in a progressively decreasing amount along the length of said second traveling conveyor firebelt and a controller for controlling air introduced to the system. The chamber has a sloped common roof section common to the burner stages and is made of radiative energy reflective fire brick and angled to reflect radiative energy generated from fuel traveling on the traveling conveyor firebelts and directing the radiative energy on fuel traveling on the first firebelt. The air introduced is controlled in amounts so as to automatically minimize excess air to the firebelt conveyors to minimize the quantity of carbon monoxide and nitrogen oxides and other pollutants.
Abstract:
A process and method is provided for operating a small-scale high-throughput gasifier. As is known in the art, the exothermic combustion reactions can be separated from the endothermic gasification reactions. The exothermic combustion reactions can take place in or near the combustor while the endothermic gasification reactions take place in the gasifier. Heat from the exothermic zone is transferred to the endothermic reaction zone by circulation of an inert particulate solid such as sand. In order to increase efficiency by reducing heat loss from the gasifier, the gasifier is concentrically-disposed within the endothermic reaction zone of the combustor.