Abstract:
An apparatus for detecting the onset of avalanche breakdown in a radio frequency bipolar power transistor is provided. The radio frequency bipolar power transistor includes a first transistor cell and a second transistor cells. The first and second transistor cells are functioning cells of the radio frequency bipolar transistor. The first transistor has a base ballast resistor. The second transistor cell has an emitter ballast resistor. The operation of the first and second transistor cells are monitored and compared against one another. A first difference voltage is generated from the first and second transistor cells under normal operating conditions. A second difference voltage is generated from the first and second transistor cells at the onset of avalanche breakdown.
Abstract:
A circuit for power amplification for an audio amplifier that reduces power supply noise amplified to the load. The circuit takes the prior art circuit's existing output coupling cap and power supply decoupling cap and connecting them in series from the power supply to ground. The output of the amplifier is then directly coupled to the load and the other side of the load is connected at the “null point” between the two capacitors.
Abstract:
A transconductor tuning circuit for controlling transconductance of a transconductor. The tuning circuit includes a first MOS (Metal-Oxide Semiconductor) transistor. A source terminal of the first MOS transistor is connected to a power source. A gate terminal and a drain terminal of the first MOS transistor being connected to each other. A gate terminal and a drain terminal of a second MOS transistor being connected. A first input terminal of a first error amplifier is connected to the gate terminal of the first MOS transistor. A second input terminal of the first error amplifier is connected to the gate terminal of the second MOS transistor. The first error amplifier outputs an output signal in form of a bias signal for controlling tuning of the transconductor.
Abstract:
A method and apparatus for a variable gain cascode amplifier (or attenuator) is disclosed. Embodiments provide for a compensated input impedance. A gain/impedance controller compensates input impedance corresponding to gain adjustments.
Abstract:
In one exemplary embodiment, a sensing circuit for sensing an output power of a power amplifier comprises a biasing circuit coupled to a detection circuit. The biasing circuit feeds a base current to the power amplifier, and the detection circuit draws a mirror current of the base current. The mirror current is fed at a first node to each of an impedance circuit and a first FET, wherein a sense voltage is generated at the first node. In one exemplary embodiment, the first FET is activated when a beta parameter of the power amplifier decreases.
Abstract:
An object of the present invention is to provide a radio frequency power amplifier of multi stage amplifying method that is designed to reduce instability of output power caused by electromagnetic coupling of bias supply terminals and interconnections of each stage to thereby operate stably. Another object of the present invention is to provide a radio frequency power amplifier that is designed to reduce distortion of output power caused by electromagnetic coupling of bias supply terminals and interconnections of each stage to thereby provide high efficiency. The above objects can be achieved by providing a first interconnection connected to a terminal for supplying a voltage for collector driving to a power amplifying transistor, a second interconnection connected to a terminal for supplying a voltage for collector driving to a second transistor controlling a base bias voltage of the above transistor, and one or more ground parts for electromagnetic shield, wherein the first interconnection and the second interconnection are separated by one or more of the ground parts for electromagnetic shield.
Abstract:
A high-frequency power amplifier includes a transistor which is inputted with a high-frequency signal, amplifies the high-frequency signal and outputs the same; a fundamental-signal matching circuit, one end of which is connected to an output of said transistor and which matches at least the impedance of fundamental signal in the amplified high-frequency signal and outputs the same from the other end; a power supply which supplies electric power to said transistor from a node located in an interval from the output of said transistor to said fundamental-signal matching circuit; a first inductor, one end of which is connected to said power supply; a second inductor connected in series between the other end of said first inductor and said node; and a first capacitor, one end of which is connected between said first inductor and said second inductor while the other end thereof is connected to a reference potential, said first capacitor forming a first series-resonant circuit with said second inductor and a parallel-resonant circuit with said first inductor.
Abstract:
An audio amplifier system (10) is formed to include a voltage reference (16). The voltage reference (16) is formed to utilize a filter having a first cut-off frequency when the output (14) of the voltage reference (16) is less than a first value and to use a second cut-off frequency when the output (14) is greater than the first value.
Abstract:
An active current bias network that compensates for Hot-Carrier Injection (HCI) induced bias drift, a common phenomenon existing in Metal-Oxide Semiconductor (MOS) transistors and especially in Laterally Diffused MOS (LDMOS) transistors. The active bias network of the present invention first senses the bias current flowing in the targeted transistor and then compares the bias current in the targeted transistor with a stable reference current. The difference between the bias current in the targeted transistor and the reference current is then utilized to adjust the bias of the targeted transistor via a current mirror feedback circuit. The bias current of the targeted transistor then is stable independent of any HCI induced bias changes and changes due to other adverse causes. The sensing MOS transistor used for monitoring bias current is operated in the triode region and has minimum effect on the performance of the targeted transistor.
Abstract:
A single transistor device is configured of a plurality of transistor cells divided and arranged in a plurality of blocks. Corresponding to the blocks a plurality of bias current supply circuits are arranged, respectively, to supply the blocks with individual bias currents, respectively. The bias current supply circuits each have a transistor with a bias condition set to decrease its ability to drive current as the corresponding bias current increases. Thus a negative feedback can be given to an increase in bias current attributed to thermal unevenness.