摘要:
A process for the chemical conversion of contaminated magnesium hydroxide to high purity solutions of magnesium bicarbonate include steps of providing an impure reagent including at least 40% and less than 95% by total weight of total metals of magnesium in a form of solid magnesium hydroxide and at least 10% by weight of total metals of calcium carbonate, combining the impure reagent containing the solid magnesium hydroxide with carbonic acid in water, thereby generating magnesium bicarbonate and water and then filtering out solid calcium carbonate leaving a solution of magnesium bicarbonate in water having a by weight ratio of Mg/(Mg+Ca) in the solution of greater than 95%. Heating and/or drying the magnesium bicarbonate solution produces correspondingly high purity magnesium carbonate.
摘要:
Provided are magnesium oxide particles which are good in dispersibility in a resin or rubber, can function sufficiently as an acid acceptor or scorch retarder, and do not lower, even after combined with a resin or rubber, material properties thereof; a resin composition; a rubber composition; and a shaped body. The magnesium oxide particles satisfying the following (A) to (C): (A) an average particle size is 5 μm or less; (B) a BET specific surface area is 20 m2/g or more and 200 m2/g or less; and (C) a screen residue by a sieve opening of 45 μm is 0.1% by weight or less.
摘要:
A method for activation of magnesium silicate minerals by conversion to magnesium hydroxide for sequestration of carbon dioxide (CO2) is provided. The method includes heating a dry solid-solid mixture of an alkaline earth Silicate-based material with an alkali metal compound at a temperature below 300 C to form a solid product predominantly comprising a mixture of magnesium hydroxide and alkali metal silicate, wherein the Silicate-based material comprises a naturally occurring Olivine, Serpentine mineral and alkali metal silicate. The method includes a subsequent dissolution of the solid product in aqueous solution to form an alkaline aqueous liquid slurry, comprising solid and aqueous phase products and the reaction of the solid phase thus formed with Carbon Dioxide (CO2), producing a metal Carbonate. The method provides a process that has shown significant cost and energy efficiencies for producing magnesium hydroxide and CO2 sequestration via mineral carbonation.
摘要:
A process for preparing magnesium compounds by precipitation, in which an aqueous solution or suspension of a magnesium compound is mixed with a precipitant and the corresponding magnesium compound is precipitated wherein the aqueous solution or suspension of a magnesium compound is obtained by reaction of an organomagnesium compound with an aldehyde or a ketone or another electrophile and subsequent aqueous workup of the reaction mixture at a pH of at most 10 or from a magnesium salt with a maximum calcium content and/or potassium content of 200 ppm, based on the magnesium salt used.
摘要:
A method for the production of Mg(OH)2 nanoparticles, by means of polyol-mediated synthesis, from an Mg precursor as well as a base. The particles produced with this method have a diameter between 10 nm to 300 nm, have a mono-disperse particle distribution, and are present in non-agglomerated form. They can be converted to MgO particles by means of calcination.
摘要:
A method for the production of Mg(OH)2 nanoparticles, by means of polyol-mediated synthesis, from an Mg precursor as well as a base. The particles produced with this method have a diameter between 10 nm to 300 nm, have a mono-disperse particle distribution, and are present in non-agglomerated form. They can be converted to MgO particles by means of calcination.
摘要翻译:通过多元醇介导的合成从Mg前体以及碱生产Mg(OH)2 N 2纳米颗粒的方法。 用该方法生产的颗粒具有10nm至300nm的直径,具有单分散颗粒分布,并且以非聚集形式存在。 它们可以通过煅烧转化为MgO颗粒。
摘要:
The present invention provides methods and apparatus for treating flue gas containing sulfur dioxide using a scrubber, and more particularly relates to recovering gypsum and magnesium hydroxide products from the scrubber blowdown. The gypsum and magnesium hydroxide products are created using two separate precipitation reactions. Gypsum is crystallized when magnesium sulfate reacts with calcium chloride. Magnesium hydroxide is precipitated when magnesium chloride from the gypsum crystallization process reacts with calcium hydroxide. The process produces a high quality gypsum with a controllable pH and particle size distribution, as well as high quality magnesium hydroxide.
摘要:
The present invention relates to recovery of industrial grade potassium chloride and low sodium edible salt from bittern as part of an integrated process. The process comprises, mixing low sulphate concentrated feed bittern (a by-product of salt industry) of density 31.5 to 32.5° Be (sp.gr. 1.277-1.289) with high density end bittern of density 36.5 to 37.5° Be′ (sp.gr. 1.336-1.35), thereby producing low sodium carnallite, from which industrial grade potassium chloride is produced. The resultant bittern is evaporated in forced evaporation system, thereby producing crude carnallite, from which low sodium salt that would be beneficial to persons suffering from hypertension is produced. When sulphate-rich bittern is used, such bittern is desulphated with CaCl2 that is generated from carnallite decomposed liquor through reaction with lime, and wherein low B2O3-containing Mg(OH)2 is a by-product. The entire content of potassium in feed bittern is recovered in the process of the invention.
摘要:
An apparatus and method for removing contaminating metal ions and sulfate ions from acidic aqueous solution such as waste mine water which features passing the solution between pairs of electrodes, each pair of electrodes impressed with a voltage selected according to specific ion species and then adding chemical agents to raise the pH and form precipitates of the metal and sulfate ions. A magnetic field is applied during at least the first mixing step. The precipitate is then separated from the water with settling and filtering steps. The clarified solution is treated by reverse osmosis to concentrate the ammonium.
摘要:
A method for the separation of magnesium hydroxide from a mixture of particulate magnesium hydroxide and dissolved sodium sulphate in water and for the washing and thickening of the magnesium hydroxide, includes the steps of pumping the mixture from a holding tank 14 through an ultrafiltration module comprising two banks 16, 18 of tubular membranes to which is applied a back pressure so that the dissolved sodium sulphate passes through the membrane pores positioned substantially at right angles to the direction of flow as a permeate; adding water to the holding tank 14 at a rate substantially equal to the permeate flow rate until the sulphate concentration in the magnesium hydroxide is less than a desired level; and then discontinuing the water addition thus allowing the magnesium hydroxide to thicken until a desired viscosity is reached.