Abstract:
A system used for converting multiple fuel feedstocks may include three reactors. The reactor system combination can be so chosen that one of the reactors completely or partially converts the fuel while the other generates the gaseous product required by utilizing the gaseous product from the second reactor. The metal-oxide composition and the reactor flow-patterns can be manipulated to provide the desired product. A method for optimizing the system efficiency where a pressurized gaseous fuel or a pressurized utility is used for applications downstream can be used to any system processing fuels and metal-oxide.
Abstract:
The present invention relates to a method for gasification of carbon-containing materials including biohazard wastes, and more specifically, to a method for gasification of carbon-containing materials which allows an increase in carbon efficiency and a reduction in carbon dioxide emission, comprising the steps of: biohazard wastes grinding and sterilization, mix with carbon-containing materials for the gasification; and catalytic production of diesel fuel. A system having a movable platform including: material preparation block, gasification and catalytic of diesel fuel production reactors which are structurally and functionally integrated. In the practice of the process, a mixture of carbon-containing materials, a compressed air feed and process steam is fed to the gasifier to produce a synthesis gas. The synthesis gas is fed to the Fischer-Tropsch reactor where it is catalytically reacted to produce heavy hydrocarbons. The outlet from the Fischer-Tropsch reactor is separated into water, a low heating value tail gas, and the desired hydrocarbon liquid product. The water is pressurized and heated to generate process steam. The system further includes a plurality of heat exchangers that enable heat to be recovered from the outlet of the gasifier. The recovered heat is used to make the process steam as well as to preheat the hydrocarbon mix before it is fed to the gasifier and preheat the synthesis gas before it is fed to the Fischer-Tropsch reactor. The method of the present invention greatly increases carbon efficiency and reduces the generation of carbon dioxide.
Abstract:
The invention relates to a process for the parallel preparation of hydrogen, carbon monoxide and a carbon-comprising product, wherein one or more hydrocarbons are thermally decomposed and at least part of the pyrolysis gas formed is taken off from the reaction zone of the decomposition reactor at a temperature of from 800 to 1400° C. and reacted with carbon dioxide to form a gas mixture comprising carbon monoxide and hydrogen (synthesis gas).
Abstract:
A system and method of producing syngas from a solid waste stream is provided. The system includes a low tar gasification generator that gasifies the solid waste stream to produce a first gas stream. A process module cools the first gas stream and removes contaminants, such as metals, sulfur and carbon dioxide from the first gas stream to produce a second gas stream having hydrogen. The second gas stream is received by a power module that generates electrical power from the second gas stream. The process module may include one or more heat exchangers.
Abstract:
The present invention relates to a gasification process and system, wherein a dryer integrated with a water-gas-shift catalyst is disposed in front of a gasifier.
Abstract:
A method for steam reforming carbonaceous material into a synthesis gas by using a single stage process of heating the carbonaceous material in a rotary kiln at an elevated reforming temperature so that the carbonaceous material undergoes substantially complete conversion to synthesis gas or by using a dual stream, multiple-stage process of heating carbonaceous material to a reforming temperature, below that at which metallic materials will typically vaporize, to form gaseous and solid materials; further reforming the gaseous materials in a second stage reforming kiln at an elevated reforming temperature to form synthesis gas; and separating carbon char from the solid material for further processing.
Abstract:
Apparatus for gasifying a solid fuel that supplies a solid fuel such as coal by dry condition to a gasification furnace of an entrained-bed type is constructed so as to be able to collect the char discharged from the gasification furnace and re-supply the char to the furnace without using a lock hopper and without changing the char into slurry form.The char discharged from the gasification furnace along with produced gases 53 produced in the gasification furnace is brought into contact with water by a gas cooler 9 and collected. After being dehydrated by a dehydrator 10, the collected char is loaded into a mill 2 or a raw-coal bunker 1. For loading into the raw-coal bunker 1, the char is dried by a drying machine 14, preferably, after the dehydration.According to the present invention, a mixture of the collected char and water can be re-supplied to the gasification furnace without using a lock hopper or a dry feeder. After being dehydrated, the char preferably is further dried and then supplied to the gasification furnace. Since a great deal of moisture is not supplied to the inside of the gasification furnace, it is possible to prevent a temperature of the gasification furnace from decreasing, and thus improve gas conversion efficiency.
Abstract:
A high efficiency gasifier employs a rotary kiln having an indirect fired gasifier and a recycle system. The rotary kiln provides an essentially oxygen-free gasifying chamber into which raw feed material is introduced. Radiant tubes within the chamber transfer heat to the incoming raw feed material to pyrolyze it and convert it to char and product gas as the material advances toward the outlet end. The recycle system within the chamber returns both product gas and hot char to a receiving end of the kiln to aid in heat transfer to the raw feed material. The feed is thus heated more rapidly, and less heat input is required. Efficiency is further aided by providing additional residence time and gasification of the char.
Abstract:
The invention relates to the cocurrent gasification of coal and to a gas generator. The gas generator (11) comprises a vertical sealed vessel, the lower third of which is divided into several identical vertical compartments (12). Coal is loaded at the top (17). The major part of the hot reactive gas under pressure is introduced at the top (18), and the remaining part at lower levels (21, 22). Gas evacuation (24) is stopped from one compartment (12) in turn, gas produced is blown in order to unclog the filters (25, 26) and to loosen the ash, the ash is extracted at the bottom (23) and cold reactive gas is blown countercurrently in order to complete the combustion and to cool the ash. This gas generator enables coal from any source to be used and does not require purification downstream.
Abstract:
A method for the gasification of coke is disclosed in which coke produced in a coking chamber and having a temperature of 900.degree. C. to 1100.degree. C. is forced into a coke bucket, after coking in the coking chamber, and fed by means of hot coke conveyors without substantial temperature changes to a gasifier. The coke is gasified in the gasifier while adding at least one of oxygen and air, and steam and carbon dioxide.