摘要:
Embodiments herein relate to protection of a standby amplifier of a memory device. Specifically, an input voltage of the standby amplifier may be reduced to decrease an occurrence of damage to the standby amplifier or components thereof. In some embodiments, the input voltage may be reduced using a voltage divider that provides the reduced input voltage to the standby amplifier during a power up operation. Upon completion of the power up operation, the input voltage of the standby amplifier may return to an operating voltage. The reduced input voltage may reduce the occurrence of damage to the standby amplifier by maintaining a gate to drain voltage of one or more transistors of the standby amplifier below a maximum.
摘要:
A fast shut-off solenoid circuit network includes a solenoid circuit and a current dissipation circuit. The solenoid circuit is operable in response to an electrical current, and configured to operate in an enable mode and a disable mode. The current dissipation circuit is configured to dissipate the current discharged from the solenoid circuit in response to invoking the disable mode. The fast shut-off solenoid circuit network further includes a dissipation bypass circuit. The dissipation bypass circuit is configured to divert the current discharged by the solenoid circuit away from current dissipation circuit when operating in the enable mode.
摘要:
An output MOS transistor has a drain connected with a power supply and a source connected with an output terminal. The short-circuit MOS transistor has a source connected with the output terminal. The short-circuit MOS transistor is formed in a semiconductor substrate connected with the power supply. A switching device is formed in a semiconductor region which is formed in the semiconductor substrate, and contains a first diffusion layer connected with the gate of the output MOS transistor and a second diffusion layer formed in the semiconductor region and connected with the drain of the short-circuit MOS transistor.
摘要:
An insulated gate turn-off thyristor has a layered structure including a p+ layer (e.g., a substrate), an n− layer, a p-well, vertical insulated gate regions formed in the p-well, and n+ regions between the gate regions, so that vertical NPN and PNP transistors are formed. Some of the gate regions are first gate regions that only extend into the p-well, and other ones of the gate regions are second gate regions that extend through the p-well and into the n− layer to create a vertical conducting channel when biased. The second gate regions increase the beta of the PNP transistor. When the first gate regions are biased, the base of the NPN transistor is narrowed to increase its beta. When the product of the betas exceeds one, controlled latch-up of the thyristor is initiated. The distributed second gate regions lower the minimum gate voltage needed to turn on the thyristor.
摘要:
A switching arrangement for an RF-GTO is specified. It comprises a latching-type semiconductor component (GTO) of familiar construction. The circuit for turning off the semiconductor component (GTO) is designed in such a manner that the turn-off gain I.sub.A /I.sub.G, peak is distinctly less than 3 and, in particular, less than or equal to 1. During the turning-off, the drive is hard, that is to say has a high rate of increase dI.sub.G /dt and high current. A capacitance (C.sub.p) is connected directly in parallel with the semiconductor component (GTO).
摘要:
There is disclosed a double gate GTO thyristor having a high gate gain and a high gate sensitivity, and capable of high speed turn-off. The double gate GTO thyristor comprises an anode/emitter layer, first and second base layers and cathode/emitter layer. A semiconductor layer having a conductivity type opposite to that of the anode/emitter layer is formed in the anode/emitter layer and located at a surface portion of the anode/emitter layer. A first gate electrode is connected to the first base layer, and a second gate electrode to the second base layer. An anode electrode is connected to the anode/emitter layer and all the surface of the semiconductor layer. A cathode electrode is connected to the cathode/emitter layer.
摘要:
A driver circuit for a large capacity switching element like power transistors etc. having an overdrive function. The driver circuit supplies a sharp overdrive current only at the build-up time and the control thereafter is effected by a constant current source so that the current limiting resistor can be saved and the current capacity of the various elements may be decreased.
摘要:
A fraction of current passing through the P-emitter region and N-base region of a thyristor is by-passed to the base-emitter junction of a PNP transistor. The amount of the base current is dependent on the thyristor current. Thus, as the anode current of the thyristor increases, the base current and hence the collector current of the PNP transistor increases. The collector current by-passed to the PNP transistor is fed, via a switch which is closed during the off-time of the thyistor, to the base-collector path of an NPN transistor whose collector and emitter are respectively connected to the gate and cathode of the thyristor. The turn-on voltage across the collector and emitter of the NPN transistor accordingly becomes lower than the gate-cathode voltage of the thyristor. The base-emitter current of the NPN transistor equals the collector current of the PNP transistor, the collector current being a fraction of the anode current by-passed to the PNP transistor. A fraction of the anode current of the turned-on thyristor is utilized as the control power for driving the NPN transistor so that additional external power for turning off the thyristor becomes almost unnecessary.
摘要:
An off-gate circuit for a GTO thyristor comprises a power source for supplying current to the circuit at a predetermined voltage, and a switching circuit connected to the power source for supplying off-gate current to the GTO thyristor at least two different current rates.
摘要:
A reverse-conducting GTO thyristor comprises a gate turn-off thyristor and a diode which are formed on a single semiconductor substrate so as to have a common layer and be connected electrically in an inverse-parallel connection. A power converter is composed of a plurality of pairs of these reverse-conducting GTO thyristors connected in series, each pair of thyristors being controlled so that they are turned on and off in opposite phases. An OFF gate pulse for one of each pair of thyristors continues from a time on or after the generation of an ON gate pulse for the other thyristor to the time when a recovery current flowing through the diode portion of the first thyristor is extinguished. The thus-extended OFF gate pulse functions to prevent any displacement current flowing through the GTO portion of the first thyristor during the recovery time for the diode portion thereof.