Abstract:
Es wird eine Vorrichtung zum Probeneintrag in ein mikrofluidisches System bereitgestellt, umfassend eine Adapterkomponente mit einer oberen Fläche und senkrecht dazu angeordneten Seitenflächen, wobei die Adapterkomponente eine erste und eine zweite Hohlnadel aufweist, welche sich von der oberen Fläche der Adapterkomponente erstrecken, wobei die erste und zweite Hohlnadel jeweils mit einem innerhalb der Adapterkomponente zu einer ersten bzw. zweiten Seitenfläche der Adapterkomponente verlaufenden Kanal in fluider Verbindung stehen, wobei die sich von der oberen Fläche erstreckenden Hohlnadeln gemeinsam von einem Kragen umgeben sind, welcher sich höher als die Hohlnadeln von der oberen Fläche erstreckt, und wobei die Adapterkomponente über den ersten und zweiten Kanal an das mikrofluidische System koppelbar ist, und der Kragen zur Aufnahme einer Probenentnahmeeinrichtung ausgebildet ist, wobei die zu entnehmende Probe über die erste und/oder zweite Hohlnadel aus der Probenentnahmeeinrichtung und in einen oder beide Kanäle abführbar ist.
Abstract:
According to embodiments of the present invention, a microfilter is provided. The microfilter includes a first porous layer and a second porous layer arranged one over the other, wherein the first porous layer includes a plurality of first pores defined through the first porous layer, wherein the second porous layer includes a plurality of second pores defined through the second porous layer, and wherein one or more respective second pores are arranged to at least substantially overlap with each respective first pore such that a respective opening defined between a perimeter of the each respective first pore and a perimeter of each of the one or more respective second pores is smaller than a diameter of each first pore. According to further embodiments of the present invention, an apparatus for separating a biological entity from a sample volume is also provided.
Abstract:
The present invention relates to a device for controlling the flow of a fluid in a compartment (4) with an inlet opening (5) and an outlet opening (6). The device comprises an inlet channel (8) connected to the inlet opening for transportation of fluid to the compartment, an outlet channel (9) connected to the outlet opening for transportation of fluid from the compartment and a pump (17) arranged to pump the fluid. The compartment is provided with a third opening (12). The device comprises a distribution chamber (15) connected to the inlet channel and a third channel (14) connected between the distribution chamber and the third opening for transportation of fluid between the distribution chamber and the compartment. The pump is arranged to vary the fluid flow velocity in the distribution chamber between a lower and a higher flow velocity, and the third channel is arranged so that its transport direction depends upon the flow velocity in the distribution chamber such that the fluid in the third channel is transported in a direction from the distribution chamber to the compartment at said lower flow velocity in the distribution chamber, which leads to a slow flow in the compartment, and in the opposite direction at said higher flow velocity in the distribution chamber due an injector effect, which leads to a substantial increase in the flow velocity in the inlet channel and thus in the compartment.
Abstract:
A method for determining an asphaltene yield curve and an asphaltene flocculation point includes obtaining a crude oil sample and measuring an optical spectrum of the crude oil sample. A titrant is then mixed with the crude oil sample at different concentrations. At each concentration, precipitated asphaltenes are filtered from the mixture and the optical spectrum of the filtrate is measured. The optical spectrum of the filtrate is then subtracted from the optical spectrum of the crude oil sample. A fractional asphaltene precipitation is determined for each concentration of titrant. A flocculation point is determined corresponding to an inflection point in the fractional asphaltene precipitation for each concentration of titrant.
Abstract:
This invention relates generally to devices and methods for performing optical and electrochemical assays and, more particularly, to test devices, e.g., cartridges, methods and systems, wherein the test devices have an entry port configured to receive a test sample into a holding chamber; a first conduit having at least one lateral flow test strip; and a displacement device, such as a pneumatic pump, configured to move a portion of said test sample from said holding chamber into said first conduit. The present invention is particularly useful for performing immunoassays and/or electrochemical assays at the point-of-care.
Abstract:
Embodiments of the present disclosure generally pertain to systems and methods for performing amplicon rescue multiplex polymerase chain reaction (arm-PCR). In one embodiment, the system comprises a processor and a reader coupled to a control element. The control element is configured to control the operation of the processor and the reader based on a variety of settings. The processor is configured to receive a self-contained cassette for performing PCR amplification of DNA and/or RNA obtained from an organic specimen. The processor engages with the cassette and manipulates reagents within the cassette in order to amplify and detect the DNA from the specimen. The processor also causes the cassette to deposit the DNA on a micro array within the cassette. The reader is configured to receive the cassette after it has been processed by the processor and to capture an image of the micro array for transmission to the control element.
Abstract:
A microfluidic device and a microfluidic system are provided. The microfluidic device includes a support substrate; and at least one filter array arranged on the support substrate and configured so as to trap a single cell in contact with the support substrate within the at least one filter array when a sample including a plurality of cells flows into the microfluidic device from a direction substantially perpendicular to a plane of the support substrate and flows out in a direction substantially parallel to the plane of the support substrate.