Abstract:
A Dynamic Random Access Memory (DRAM) performs read, write, and refresh operations. The DRAM includes a plurality of sub-arrays, each having a plurality of memory cells, each of which is coupled with a complementary bit line pair and a word line. The DRAM further includes a word line enable device for asserting a selected one of the word lines and a column select device for asserting a selected one of the bit line pairs. A timing circuit is provided for controlling the word line enable device, the column select device, and the read, write, and refresh operations in response to a word line timing pulse. The read, write, and refresh operation are performed in the same amount of time.
Abstract:
In a switch including a plurality of ports, an IP Multicast packet arriving on an ingress port a copy of the receiver packet is forwarded to each member of the IP Multicast group at wire-speed. The packet is bridged once to a given egress port and may be routed multiple times out of the egress port. If multiple subnets exist on an egress port, each subnet that requires a copy of the packet will receive the packet with its VLAN ID included in the packet. The received IP Multicast packet for an IP Multicast group is stored in memory, a pointer to the location of the packet in memory is stored for each port to which a copy of the packet is to be forwarded. An IP Multicast forwarding entry is provided for the IP Multicast group. The forwarding entry includes a modification entry for each packet to be forwarded to the IP Multicast group. A copy of the stored packet is modified dependent on the modification entry and forwarded in the next available port cycle for the port.
Abstract:
A composite memory device including discrete memory devices and a bridge device for controlling the discrete memory devices in response to global memory control signals having a format or protocol that is incompatible with the memory devices. The discrete memory devices can be commercial off-the-shelf memory devices or custom memory devices which respond to native, or local memory control signals. The global and local memory control signals include commands and command signals each having different formats. The composite memory device includes a system in package including the semiconductor dies of the discrete memory devices and the bridge device, or can include a printed circuit board having packaged discrete memory devices and a packaged bridge device mounted thereto.
Abstract:
A multi-chip device and method of stacking a plurality substantially identical chips to produce the device are provided. The multi-chip device, or circuit, includes at least one through-chip via providing a parallel connection between signal pads from at least two chips, and at least one through-chip via providing a serial or daisy chain connection between signal pads from at least two chips. Common connection signal pads are arranged symmetrically about a center line of the chip with respect to duplicate common signal pads. Input signal pads are symmetrically disposed about the center line of the chip with respect to corresponding output signal pads. The chips in the stack are alternating flipped versions of the substantially identical chip to provide for this arrangement. At least one serial connection is provided between signal pads of stacked and flipped chips when more than two chips are stacked.
Abstract:
A system having serially connected memory devices in a ring topology organization to realize high speed performance. The memory devices have dynamically configurable data widths such that the system can operate with up to a maximum common number of active data pads to maximize performance, or to operate with a single active data pad to minimize power consumption. Therefore the system can include a mix of memory devices having different data widths. The memory devices are dynamically configurable through the issuance of a single command propagated serially through all the memory devices from the memory controller in a broadcast operation. Robust operation of the system is ensured by implementing a data output inhibit algorithm, which prevents valid data from being provided to the memory controller when read output control signal is received out of its proper sequence.
Abstract:
A system having serially connected memory devices in a ring topology organization to realize high speed performance. The memory devices have dynamically configurable data widths such that the system can operate with up to a maximum common number of active data pads to maximize performance, or to operate with a single active data pad to minimize power consumption. Therefore the system can include a mix of memory devices having different data widths. The memory devices are dynamically configurable through the issuance of a single command propagated serially through all the memory devices from the memory controller in a broadcast operation. Robust operation of the system is ensured by implementing a data output inhibit algorithm, which prevents valid data from being provided to the memory controller when read output control signal is received out of its proper sequence.
Abstract:
An apparatus, system, and method for controlling data transfer between a serial data link interface and memory banks in a semiconductor memory is disclosed. In one example, a flash memory device with multiple serial data links and multiple memory banks, where the links are independent of the banks, is disclosed. The flash memory devices may be cascaded in a daisy-chain configuration using echo signal lines to serially communicate between memory devices. In addition, a virtual multiple link configuration is described wherein a single link is used to emulate multiple links.
Abstract:
A delay locked loop includes initialization circuitry that ensures that a DLL is initialized to an operating point that is not to close to either end of a delay vs. control voltage characteristic. The initialization circuitry forces the DLL to initially search for a lock point starting from an initial delay, the delay is varied in one direction, forcing the DLL to skip the first lock point. The initialization circuitry only allows the DLL to vary the delay of the voltage controlled delay loop in the one direction from the initial delay until the operating point is reached.
Abstract:
A cam system comprising a plurality of CAM devices connected in a serial cascade arrangement, the CAMS in the cascade being connected to an adjacent CAM by a respective forwarding bus, with at most a first CAM in the cascade being connected to a receive data signals from a host controller and at most a last CAM devices being coupled to forward results back to the host controller; and a send signal generation means for supplying a SEND signal to the last CAM; the SEND signal for co-ordinating transfer of the search result from the last CAM to the host controller, the serial cascade arrangement minimising the number of CAMs being connected to a common forwarding bus.
Abstract:
A priority encoder circuit for detecting multiple match in a CAM, the priority encoder comprising a plurality of inputs each for receiving a respective matchline signal, the inputs being arranged in a predetermined priority order and being enabled by a matchline signal being received thereon; a plurality of outputs corresponding to ones of said inputs; means for enabling one of the outputs corresponding to an enabled input, that is of the highest priority; and a circuit for logically combining a sufficient number of the inputs and outputs of the PE in order to determine whether more than one respective matchline signals has been received, the determination is based on an observation that for every match line input to the PE, there is a corresponding output from the PE and that the highest priority match should have the match line as well as its corresponding priority match output enabled and that if a match line output is enabled but its corresponding output is not, then there is another higher priority match line output, i.e. there must be multiple match line hits.