Abstract:
The object of the invention is a multi-purpose internal combustion engine, which is a 4-stroke engine with or without a turbocharger with a spark ignition or compression ignition, which can work interchangeably in 2 different ways: 1. - normal operation, by using all cylinders as shown in Fig. 1A and 6A; 2.- in an economical way, when some of its cylinders are switched off and with expansion of the exhaust gases in these cylinders from the cylinders working as in Fig. lB, 2C and 2D as well as 6B, 7C and 7D. The exhaust gas pressure in the cylinders at the time of opening the exhaust valves is even up to 6 bar above the atmospheric pressure. This engine differs from a normal engine mainly by the construction of the head and timing. When the vehicle gains speed and when the demand for power is much smaller, the engine control unit switches off the operation in some of its cylinders and changes the control of the valves. Then, the engine works in an economical way. The expected increase in efficiency is up to 15% compared with the engine in which the power is switched off only in some of the working cylinders.
Abstract:
A rocker arm assembly includes an outer arm having a first outer side arm and a second outer side arm, each of the first and second outer side arms having a low lift lobe contacting surface, an inner arm having a high lift lobe contacting surface and disposed between the first and second outer side arms, the inner arm having a first end and a second end operably associated with a lash adjuster and defining a latch bore, and a latch assembly arranged at least partially within the latch bore. The latch assembly is movable between a first configuration and a second configuration. In the first configuration, the latch assembly engages the outer arm such that the outer arm rotates with the inner arm, and in the second configuration, the latch assembly disengages the outer arm such that the outer arm rotates independently from the inner arm.
Abstract:
An inlet-valve arrangement (1) for an external-heat engine (5), which includes at least one working chamber (33), each one having a cooperating piston (4) and the working chamber (33) being supplied with a working fluid via at least one controlled poppet valve (6, 40), the poppet valve (6, 40) being arranged to open in the opposite direction to the flow direction of the working fluid, and the centre axis (20) of the poppet valve (6, 40) being arranged perpendicularly within a deviation of ± 45 degrees relative to the centre axis (34) of the piston (4).
Abstract:
A torsion assembly for providing controllable torsion to a camshaft, including: a spring assembly including a first spring; and, a contact element arranged to engage at least one lobe for the camshaft. For a locked mode: the contact element is arranged to be displaced by the at least one cam lobe; the contact element is arranged to compress the first spring; and the first spring is arranged to impart a first torque to the camshaft via the contact element. For an unlocked mode, the contact element is arranged to be displaced by the at least one cam lobe and the contact element is arranged to impart a second torque, less than the first torque, to the cam shaft via the contact element.
Abstract:
Systems for actuating at least two engine valves comprise a valve bridge operatively connected to the at least two engine valves and having a hydraulically-actuated lost motion component. The lost motion component comprises a lost motion check valve disposed therein. A rocker arm has a motion receiving end configured to receive valve actuation motions from a valve actuation motion source and a motion imparting end for conveying the valve actuation motions and hydraulic fluid to the lost motion component. The rocker arm is in fluid communication with a hydraulic fluid supply. The systems also comprise an accumulator in fluid communication with the hydraulic fluid supply and disposed upstream of the lost motion check valve. In all embodiments, a fluid supply check valve may be disposed upstream of the accumulator and configured to prevent flow of hydraulic fluid from the accumulator back to the hydraulic fluid supply.
Abstract:
The problem to be solved by the present invention lies in making it possible to reduce costs and to reduce the size of an oil pump, without impeding the degree of freedom in chain layout. An oil jet 1 is constructed in order to supply lubricating oil to a tension-side span of a chain C while also causing a tensioning force to act on a slack-side span of the chain C. The oil jet arm 1 is provided with a pivoting-side part 2A, and a tip-end side part 2B which is provided in such a way as to be pivotable about the pivoting-side part 2A and is acted on by a pressing force from a piston 41 of a hydraulic tensioner 4, and an oil ejection hole 22a for ejecting to the outside oil supplied from an oil discharge hole 41a in the piston 41 is formed in the tip-end side part 2B. Oil ejected from the oil ejection hole 22a is supplied to a portion E on the meshing start side with a sprocket 100 on the tension-side span of the chain C.
Abstract:
Vorgeschlagen ist ein Aktuator für einen elektrohydraulischen Gaswechselventiltrieb einer Brennkraftmaschine. Der Aktuator umfasst ein an der Brennkraftmaschine montierbares Aktuatorgehause (17) mit einer Bohrung (18), einen darin hubbeweglich gelagerten Hydraulikkolben (6) zur Betätigung des Gaswechselventils (2) und einen Axialanschlag (19), der im unmontierten Zustand des Aktuatorgehäuses an der Brennkraftmaschine den Kolbenhub aus der Bohrung auf einen Montagehub (T) beschränkt. Dieser soll kleiner als ein maximaler Betriebshub (L) sein, mit dem der Hydraulikkolben das Gaswechselventil betätigt, wobei die Beschränkung des Kolbenhubs auf den Montagehub durch den Axialanschlag lediglich temporär und nach Inbetriebnahme des Aktuators (16) aufgehoben ist.