Abstract:
Embodiments of the present disclosure include, for example, an embolic protection system (EPS) including an inner-body having a body diameter and a distal section, and an expandable filter arranged on or adjacent at least the distal section of the inner-body. The filter is configured to include a plurality of pores, sized to allow the flow of the blood with limited interruption and capture of emboli greater than the pore size. Such embodiments may also include an expandable introducer sheath/sleeve having a sheath diameter configured to accommodate the inner-body and filter, including the distal portion, when unexpanded, as well as a tear-away (TA) sleeve having a sleeve diameter configured to accommodate the introducer sheath containing the inner-body and filter when unexpanded.
Abstract:
An electrophoresis cassette may include sample well(s), gel column(s) containing a separation gel, and elution modules arranged adjacent the gel column(s). A sample may be provided to the electrophoresis cassette and high-molecular weight DNA may be isolated from the sample. Single-copy DNA sequences may be cleaved on both sides of a repeat region of the DNA sequences to produce a cleaved sample, which then may be fractionated using gel electrophoresis. DNA fractions may be isolated from consecutive sections of the separation gel and subjected to PCR assays to detect single-copy sequences within the DNA fraction, said single-copy sequence containing repeat expansion sequences. The subjected DNA fractions may be electroeluted into the plurality of elution modules. A size of DNA fractions having the repeat expansion sequences may be determined. It is also determined if that size is above a normal repeat size range.
Abstract:
In some embodiments, an indoor air cleaning apparatus and a method for removing at least a portion of at least one type of gas from an indoor airflow are disclosed. The apparatus may comprise a cabinet; at least one sorbent bank comprising at least one cartridge; a fan assembly comprising at least one housing including at least one housing inlet and at least one housing outlet, at least one motor and at least one impeller; and a heating element configured to operate in at least one of two modes: an active mode and an inactive mode; and a controller configured to operate in at least two modes: an adsorption mode and a regeneration mode.
Abstract:
In some embodiments, there is provided a scrubber system for cleaning return air in an HVAC unit, where the scrubber system attaches directly to an inlet of the return-air side of the HVAC unit, for example, by the mating of a flange on the system with a matching flange on the HVAC unit. The bolt-on scrubber system may comprise one or more sorbent materials, a fan for circulating return air through the sorbent, a damper-controlled inlet and a damper-controlled outlet to the attached return air side of the HVAC unit. Further, an additional air flow channel and a damper may be included in the system to control the flow of outside air into the HVAC unit. In some embodiments, the sorbents may be contained in removable inserts.
Abstract:
Embodiments of the present disclosure relate to a platform for at least one of capturing, identifying and studying biological materials, and more particularly, to microfluidic channel platforms (for example) for detecting and/or identifying samples containing sperm cells, and isolating and analyzing captured sperm cells for DNA analysis (for example). In some embodiments, such microfluidic platforms integrate imaging technology. Such embodiments provide the ability to at least one of rapidly isolate and quantitate sperm cells from biological mixtures as occur in sexual assault evidence, for example, thereby enhancing identification of suspects in these cases and contributing to the safety of society.
Abstract:
Embodiments of the present disclosure are directed to devices, systems, and methods for controlling environmental conditions for a volume of material. In some embodiments, a handheld, portable environmental control sleeve (ECS) is disclosed which is configured for controlling at least one environmental condition of a drug contained within a drug delivery or storage device (DDSD). The ECS includes an environmental control mechanism (ECM), thermal insulation material, at least one of a power source, a processor, at least one electrical contact, at least one indicator, at least one switch, at least one environmental condition sensor, a wireless transceiver, a phase change material and at least one heat dissipater. Upon the ECS receiving at least a portion of the DDSD, the at least one environmental condition of a drug contained within the DDSD is controlled by the ECM to be within a predetermined range.
Abstract:
A system for determining drug effectiveness on a plurality of cells is described. The system includes flowing a ferrofluid mixed with a plurality of biological cells through an inlet portion of a cartridge, the cartridge comprising a plurality of microfluidic channels, the inlet is in communication with a portion of each of the plurality of channels, applying a magnetic field proximate at least one of the inlet portion and the plurality of micro-channels, wherein the magnetic field is configured to apply an indirect force on the mix, separating biologic cells according to at least a first type as the mix flows in a first direction; and directing at least the first type of cells toward a first sensor functionalized with receptors via at least one of the micro-channels, the sensor arranged proximate to a second portion of at least one of the micro-channels downstream from the first inlet portion.
Abstract:
Some embodiments of the present disclosure are directed to systems and methods for separating, directing, and/or extracting a target molecule from a mix of molecules and may comprise a plurality of non-magnetic beads suspended in a ferro fluid, where the non-magnetic beads may be functionalized with at least one predetermined first molecule configured to bind with a target particle. A microfluidic device may be included which may comprise at least one microfluidic channel, the device configured to dynamically and/or statically receive an amount of the mix. Magnetic field means may be included and may be configured to apply a magnetic field to at least a portion of the at least one channel to exert an indirect force on the non-magnetic beads in the ferro fluid mix, and separate the non-magnetic beads from the ferrofluid. The beads may then be directed to at least one receptor region. At least one outlet may be provided which is arranged to be in communication with the at least one microfluidic channel, the at least one outlet may be configured to receive and extract the separated non-magnetic beads from the ferrofluid.
Abstract:
An air treatment system for at least partially removing at least one gaseous contaminant contained in indoor air of a room structured for human occupants. The system may comprise an air treatment assembly having an indoor air inlet configured to receive indoor airflow directly from a room, a regenerable adsorbent material configured to adsorb at least one gaseous contaminant contained in the indoor airflow, at least one airflow element for directing the indoor airflow to flow through the air treatment assembly, an indoor air outlet for expelling the indoor air, from the air treatment assembly back into the room, a purge air inlet configured to receive and direct purge air over and/or through the adsorbent material for removal of at least a portion of the at least one gaseous contaminant, and a purge air outlet for expelling the purge air out of the air treatment assembly.
Abstract:
Embodiments of the present disclosure are directed to recognition tunneling methods, systems and devices for the detection of carbohydrates by measuring tunneling currents of sugars which give distinct electronic signals in a tunnel gap functionalized respectively with, for example, in some embodiments, 4(5)-(2-mercaptoethyl)-lH imideazole-2-carboxamide and 4-mercaptophenylboronic acid molecules on at least one, and preferably each electrode.