Abstract:
The present disclosure is directed to a wire wrap composition having a polyimide layer and a bonding layer. The polyimide layer is composed of a polyimide and a sub-micron filler. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub-micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.
Abstract:
The present disclosure is directed to a thin film transistor composition. The thin film transistor composition has a semiconductor material and a substrate. The substrate is composed of a polyimide and a sub-micron filler. The polyimide is derived from at least one aromatic dianhydride component selected from rigid rod dianhydride, non-rigid rod dianhydride and combinations thereof, and at least one aromatic diamine component selected from rigid rod diamine, non-rigid rod diamine and combinations thereof. The mole ratio of dianhydride to diamine is 48 52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine. The sub micron filler is less than 550 nanometers in at least one dimension; has an aspect ratio greater than 3:1; is less than the thickness of the film in all dimensions.
Abstract:
Disclosed herein too is a method of manufacturing an electrically conducting polymeric composition comprising blending an organic polymer composition that comprises a thermoplastic organic polymer; an electrically conducting filler composition that comprises metal fibers; and an electrically insulating composition in an extruder; wherein the electrically insulating composition is fed into the extruder downstream of the location at which the organic polymer composition is fed into the extruder and wherein the electrically conducting filler composition is fed into the extruder at a location downstream of the location at which the electrically insulating composition is fed into the extruder.
Abstract:
A compressed sheet gasketing material is provided with a combination of high elastomer content and high swelling medium content. In one aspect, the swelling medium may include bentonite clay and may be provided a weight percentage that varies from 30 to 60%. In another aspect, a rubber content weight percentage that varies from 20 to 30% provides a relatively high compressibility. The compressed sheet gasketing material may further include one or more various fibers commonly used in high pressure sheet formulations.
Abstract:
A composition comprises a polyalkylene terephthalate and/or polyester thereof, a free triglyceride, a dendrimer, and optionally, an epoxy component. The composition is used to prepare a thermoplastic polymer. The composition and the thermoplastic polymer may be used to form an article having an improved hydrolysis resistance and an improved melt viscosity. The article may be useful for automotive, electrical, household, and industrial applications. A method of preparing the thermoplastic polymer is also disclosed.
Abstract:
A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are sandwiched between outer layers consisting of polymer and graphite particles, then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have sufficient mechanical strength and bulk conductivity to be used in fuel cells The outer layers provide for enhanced conductivity and resistance to gas permeation.