Abstract:
Methods and systems for characterizing dimensions and material properties of high aspect ratio, vertically manufactured devices using transmission, small-angle x-ray scattering (T-SAXS) techniques are described herein. Exemplary structures include spin transfer torque random access memory (STT-RAM), vertical NAND memory (V-NAND), dynamic random access memory (DRAM), three dimensional FLASH memory (3D-FLASH), resistive random access memory (Re-RAM), and PC-RAM. In one aspect, T-SAXS measurements are performed at a number of different orientations that are more densely concentrated near the normal incidence angle and less densely concentrated at orientations that are further from the normal incidence angle. In a further aspect, T-SAXS measurement data is used to generate an image of a measured structure based on the measured intensities of the detected diffraction orders. In another further aspect, a metrology system is configured to generate models for combined x-ray and optical measurement analysis.
Abstract:
Metrology scatterometry targets, optical systems and corresponding metrology tools and measurement methods are provided. Targets and/or optical systems are designed to enhance first order diffraction signals with respect to a zeroth order diffraction signal from the scatterometry target by creating a phase shift of 180° between zeroth order diffraction signals upon illumination of the scatterometry targets. For example, the targets may be designed to respond to polarized illumination by producing a first phase shift between zeroth order diffraction signals upon illumination thereof and optical systems may be designed to illuminate the target by polarized illumination and to analyze a resulting diffraction signal to yield a second phase shift between zeroth order diffraction signals upon illumination thereof. The phase shifts add up to 180° to cancel out the zeroth order diffraction signals, with either phase shift being between 0 and 180°.
Abstract:
The present disclosure is directed to laser produced plasma light sources having a target material, such as Xenon, that is coated on the outer surface of a cyiindrically-symmetric element (e.g., drum). Embodiments include a pre-pulsing arrangement which can be optimized to reduce irradiation damage to the drum and a pulse trimming unit which can be employed to reduce irradiation damage to the drum. In addition, an embodiment is disclosed wherein the surface of a cyiindrically-symmetric element is formed with a plurality of grooves having a groove depth greater than 1 mm and a focusing unit focusing a laser beam and establishing an irradiation site to produce plasma from the target material, with the irradiation site distanced from a groove surface portion to protect the surface portion from irradiation damage.
Abstract:
An illumination pump source is disclosed. The illumination pump source includes a set of power sources configured to generate a set of laser beams, with at least some of the set of laser beams configured to include illumination having different wavelengths. The illumination pump source also includes an optical fiber. The illumination pump source also includes one or more optical elements, the one or more optical elements configured to couple the illumination from at least some of the laser beams to one or more regions of the optical fiber.
Abstract:
The generation of flexible sparse metrology sample plans includes receiving a full set of metrology signals from one or more wafers from a metrology tool, determining a set of wafer properties based on the full set of metrology signals and calculating a wafer property metric associated with the set of wafer properties, calculating one or more independent characterization metrics based on the full set of metrology signals, and generating a flexible sparse sample plan based on the set of wafer properties, the wafer property metric, and the one or more independent characterization metrics. The one or more independent characterization metrics of the one or more properties calculated with metrology signals from the flexible sparse sampling plan is within a selected threshold from one or more independent characterization metrics of the one or more properties calculated with the full set of metrology signals.
Abstract:
Methods and systems for determining characteristic(s) of patterns of interest (POIs) are provided. One system is configured to acquire output of an inspection system generated at the POI instances without detecting defects at the POI instances. The output is then used to generate a selection of the POI instances. The system then acquires output from an output acquisition subsystem for the selected POI instances. The system also determines characteristic(s) of the POI using the output acquired from the output acquisition subsystem.
Abstract:
Focus metrology methods and modules are provided, which use aerial-images-based transformations to share measurement information derived from multiple targets and/or to design additional targets to specified compliant targets, which enable simple adjustment of focus targets to changing production conditions. Methods comprise positioning two or more focus targets in each wafer field, conducting focus measurements of the targets, transforming the focus measurements into a single set of results for each field, using a transformation between the targets that is based on the aerial images thereof, and deriving focus results from the single sets of results; and possibly designing the focus targets from specified targets using aerial image parameters of the specified targets.
Abstract:
Methods and systems for evaluating and ranking the measurement efficacy of multiple sets of measurement system combinations and recipes for a particular metrology application are presented herein. Measurement efficacy is based on estimates of measurement precision, measurement accuracy, correlation to a reference measurement, measurement time, or any combination thereof. The automated the selection of measurement system, combinations and recipes reduces time to measurement and improves measurement results. Measurement efficacy is quantified by a set of measurement performance metrics associated with each measurement system, and recipe. In one example, the sets of measurement system combinations and recipes most capable of measuring the desired parameter of interest are presented to the user in rank order based on corresponding values of one or more measurement performance metrics. A user is able to select the appropriate measurement system combination in an objective, quantitative manner.
Abstract:
A system includes a nonlinear crystal positioned such that a focus of a laser beam is outside the nonlinear crystal in at least one plane perpendicular to a beam propagation direction of the laser beam. The nonlinear crystal is disposed in a crystal mount assembly. A laser beam may be directed at the nonlinear crystal for wavelength conversion. The system may be used as a deep-UV wavelength converter.
Abstract:
Methods and systems for determining overlay error between different patterned features of a design printed on a wafer in a multi-patterning step process are provided. For multi-patterning step designs, the design for a first patterning step is used as a reference and designs for each of the remaining patterning steps are synthetically shifted until the synthetically shifted designs have the best global alignment with the entire image based on global image-to-design alignment. The final synthetic shift of each design for each patterning step relative to the design for the first patterning step provides a measurement of relative overlay error between any two features printed on the wafer using multi-patterning technology.