Abstract:
Articles comprising carbon composites are disclosed. The carbon composites contain carbon microstructures having interstitial spaces among the carbon microstructures; and a binder disposed in at least some of the interstitial spaces; wherein the carbon microstructures comprise unfilled voids within the carbon microstructures. Alternatively, the carbon composites contain: at least two carbon microstructures; and a binding phase disposed between the at least two carbon microstructures; wherein the binding phase comprises a binder comprising one or more of the following: SiO 2 ; Si; B; B 2 O 3 ; a metal; or an alloy of the metal; and wherein the metal is at least one of aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
A test method and apparatus employs a microfluidic device to characterize properties of a fluid. The microfluidic device has an inlet port, an outlet port, and a microchannel as part of a fluid path between the inlet port and the outlet port. While a fluid is introduced into the microchannel, the fluid temperature is maintained while the fluid pressure in the microchannel is varied to characterize the properties of the fluid in the microchannel. The properties of the fluid can relate to a scale onset condition of the fluid at the pressure of the flow through the microchannel. In one aspect, fluid pressure in the microchannel is maintained while the fluid temperature is varied to characterize the properties of the fluid. In another aspect, flow rate of the fluid through the microchannel is varied while the fluid temperature is maintained to characterize the properties of the fluid in the microchannel.
Abstract:
A disposable cartridge (1) is configured for use in a digital microfluidics system (3) for manipulating samples in liquid portions or droplets (4). The digital microfluidics system (3) comprises a cartridge accommodation site (2) and a central control unit (7) for controlling the selection of individual electrodes (8) of an electrode array (5) located at said cartridge accommodation site (2) and for providing a number of said electrodes (8) with individual voltage pulses for manipulating liquid portions or droplets (4) by electrowetting. The disposable cartridge (1) comprises a hydrophobic working surface (10) and a rigid cover (11 ) with a second hydrophobic surface (12), the hydrophobic surfaces (10,12) facing each other and being separated or being separable in essentially parallel planes by a gap (13) with a gap height (14).
Abstract:
A fluid testing system comprises controlling hardware that serves to control an electric sensor on a fluid testing cassette. In one implementation, the controlling hardware is part of a cassette interface. In another implementation, the controlling hardware is part of the portable electronic device. In one implementation, the fluid testing system applies two different frequencies of alternating current are applied to two different electric sensors.
Abstract:
Systems, including apparatus and methods, for the microfluidic manipulation, dispensing, and/or sorting of particles, such as cells and/or beads. The systems may include a shaped focusing chamber and/or a branched diverting mechanism. The invention provides systems, including apparatus and methods, for the microfluidic on-demand dispensing and/or sortation of particles, such as cells, viruses, organelles, beads, and/or vesicles. The systems may include a diamond-shaped focusing chamber and/or a branched diverting mechanism.
Abstract:
The present invention describes an integrated apparatus that enables identification of migratory cells directly from a specimen. The apparatus only requires a small number of cells to perform an assay and includes novel topographic features which can reliably differentiate between migratory and non-migratory cell populations in a sample. Both the spontaneous and chemotactic migration of cancer cells may be measured to distinguish between subpopulations within a tumor sample. The migratory cells identified using the apparatus and methods of the present invention may be separated and further analyzed to distinguish factors promoting metastasis within the population. Cells in the apparatus can be treated with chemotherapeutic or other agents to determine drug strategies to most strongly inhibit migration. The use of optically transparent materials in some embodiments allows a wide range of imaging techniques to be used for in situ imaging of migratory and non- migratory cells in the apparatus. The apparatus and methods of the present invention are useful for predicting the metastatic propensity of tumor cells and selecting optimal drugs for personalized therapies.
Abstract:
Microfluidic systems and methods for thermal flow cytometry are disclosed. According to an aspect, a system for thermal flow cytometry includes a microfluidic device including one or more channels for passage of one or more particles. The system also includes a temperature detector configured to change resistance in response to a temperature change within the channel(s). The system also includes a computing device configured to detect the resistance change and to count the one or more particles based on the detected resistance change.