Abstract:
Fuel management system for operation of a spark ignition gasoline engine. The system includes a gasoline engine powering the vehicle and a source of gasoline for introduction into the engine. A source of an anti-knock fuel such as ethanol is provided. An injector directly injects the anti-knock fuel into a cylinder of the engine and the control system shuts down the engine by stopping gasoline and anti-knock agent flow into the engine during vehicle deceleration and idling and restarts the engine upon driver demand. Direct ethanol injection and engine shutdown results in efficiencies similar to those of full hybrid vehicles.
Abstract:
Fuel management system for enhanced operation of a spark ignition gasoline engine. Injectors inject an anti-knock agent such as ethanol directly into a cylinder. It is preferred that the direct injection occur after the inlet valve is closed. It is also preferred that stoichiometric operation with a three way catalyst be used to minimize emissions. In addition, it is also preferred that the anti-knock agents have a heat of vaporization per unit of combustion energy that is at least three times that of gasoline.
Abstract:
A hydrogen enhanced gasoline engine system using high compression ratio is optimized to minimize NOx emissions, exhaust aftertreatment catalyst requirements, hydrogen requirements, engine efficiency and cost. In one mode of operation the engine is operated very lean at lower levels of power. A control system is used to increase equivalence ratio at increased torque or power requirements while avoiding the knock that would be produced by high compression ratio operation. Accordingly reduced hydrogen requirements at high power can significantly reduce the cost and size of onboard hydrogen generator technology. Increased in-cylinder turbulence and stratified hydrogen injection can be used to minimize hydrogen requirements for operation at a given equivalence ratio value. In another embodiment, hydrogen enhanced exhaust gas recirculation (EGR) at all power levels is used.
Abstract:
The present invention provides a relatively compact self-powered, tunable waste conversion system and apparatus which has the advantage of highly robust operation which provides complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The system provides the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or by an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be dipsosed of without special considerations as hazardous material. In the preferred embodiment of the invention, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of boththe arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced or without further use of the gases generated by the conversion process. The apparatus may be employed as a self-powered or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production.
Abstract:
Embodiments of the invention relate to systems and methods for cracking hydrocarbons into hydrogen gas and carbon using heating of a fluidized bed. The systems and methods utilize electrically conductive carbon or graphite particles as a fluidized bed material for heating hydrocarbon feedstock to at least a pyrolysis temperature. The electrically conductive carbon, graphite, or other particles may be heated by electrically powered sources that include induction heating, microwave heating, millimeter wave heating, joule heating and/or plasma heating. Combustion heating may also be employed in varying amounts with varying combinations of electrically powered heating sources.
Abstract:
Fuel management system for operation of a spark ignition engine. The system includes a source of gasoline and a source of anti-knock fuel. A proportioning valve receives the gasoline and the anti-knock fuel to discharge a mixture having a controlled gasoline/anti-knock fuel ratio. A single high pressure pump receives the mixture and delivers the mixture to an injector. A fuel management control system controls the proportioning valve and the injector for injection of the mixture into a cylinder of the engine to control knock. A preferred anti-knock fuel is ethanol.
Abstract:
Ion mobility spectrometer. The spectrometer includes an enclosed region having a gas with a selected chemical species contained therein. An energy source ionizes the gas and the chemical species. Spaced apart electrodes generate high frequency and DC electric fields across the enclosed region and circuitry is provided for generating voltage waveforms on the electrodes. The voltage waveforms include a symmetric RF field to minimize ion loss and to prevent clustering of the ions with water molecules during an ion buildup phase. A DC and asymmetric, non-uniform RF field is provided to separate and focus the ions in the region during an ion separation phase. Finally, a changing DC or RF field causes the ionized chemical species to move to the electrodes and read-out circuitry responds to current in the electrodes to indicate the presence and/or amount of the chemical species.
Abstract:
Pollution control apparatus. An exhaust aftertreatment unit is fitted to the exhaust of an internal combustion engine and a fuel reformer provides hydrogen rich gas in an optimal way to the aftertreatment unit to regenerate the aftertreatment unit. It is preferred that the hydrogen rich gas be provided only to a portion of the aftertreatment unit at any time to regenerate that portion. Stored hydrogen may be used.
Abstract:
High compression ratio, homogeneous charge compression ignition engines. In one aspect the engine is dual mode utilizing spark ignition at high load levels including the addition of hydrogen or a hydrogen/carbon monoxide mixture. In another aspect the engine operates on a high cetane fuel with the addition of hydrogen or a hydrogen/carbon monoxide mixture at low-to-mid-load levels.
Abstract:
A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron (10) and at least one catalyst (22, 24, ..., 26) for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an imput air (14), fuel (16) and water/steam (18) for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.