Abstract:
A connector, and method for forming same, for electrically connecting to pads formed on a semiconductor device includes a substrate and an array of contact elements of conductive material formed on the substrate. Each contact element includes a base portion attached to the top surface of the substrate and a curved spring portion extending from the base portion and having a distal end projecting above the substrate. The curved spring portion is formed to curve away from a plane of contact and has a curvature disposed to provide a controlled wiping action when engaging a respective pad of the semiconductor device.
Abstract:
A system for batch forming a sheet of spring elements in three dimensions includes a top spacer layer. A plurality of ball bearings is arranged in a predetermined pattern on the top spacer layer. A spring element sheet containing the spring elements defined in two dimensions is positioned on the top spacer layer and the plurality of ball bearings. A top spacer layer is positioned on the spring element sheet. The top spacer layer and the bottom support layer are adapted to have a force applied thereto to push the plurality of ball bearings against the spring element sheet, such that the spring elements extend above the plane of the spring element sheet, thereby forming the spring elements in three dimensions.
Abstract:
An electrical connection system with electrical contacts held in place with a releasable clamp assembly. The clamp includes a base portion which is secured to a portion of one member containing electrical contacts (such as a printed circuit board) and includes a cover portion which fits over the other member containing electrical contacts (such as an electrical connector) to provide a compressive force on the mated members, bringing and maintaining the electrical contacts into electrical connection.
Abstract:
A scalable, low cost, reliable, compliant, low profile, low insertion force, high-density, separable and reconnectable connector for high speed, high performance electronic circuitry and semiconductors. The electrical connector can be used to make, for example, electrical connections from components such as a Printed Circuit Board (PCB) to another PCB, MPU, NPU, or other semiconductor device. A normalized working range for an array of elastic contacts of the interposer can be about 0.2 to 1.0. A reversible normalized working range is maintained through multiple connections and reconnections using a highly elastic material for the contact arms. In one aspect, a first electrical component having a first array pitch can be connected to a second electrical component having a second array pitch.
Abstract:
A compliant, scalable, thermal-electrical-mechanical, flexible electrical connector. In one configuration, the flexible electrical connector comprises a flexible substrate, a first and second conductive layer, and a plating contiguously applied over the conductive layers and holes through the substrate. The first and second conductive layers are adhered to opposite sides of the flexible substrate and have a plurality of raised contact elements in registration with at least a subset of the holes. At least some contact elements on the first and second conductive layers that oppose each other are in electrical communication with one another by way of the plating.
Abstract:
A system for batch forming a sheet of spring elements in three dimensions includes a top spacer layer. A plurality of ball bearings is arranged in a predetermined pattern on the top spacer layer. A spring element sheet containing the spring elements defined in two dimensions is positioned on the top spacer layer and the plurality of ball bearings. A top spacer layer is positioned on the spring element sheet. The top spacer layer and the bottom support layer are adapted to have a force applied thereto to push the plurality of ball bearings against the spring element sheet, such that the spring elements extend above the plane of the spring element sheet, thereby forming the spring elements in three dimensions.
Abstract:
A system for batch forming a sheet of spring elements in three dimensions is described. A spring element sheet containing spring elements defined in two dimensions is arranged between two mating die press plates. A force is applied to the mating die press plates to form the two-dimensional spring contact elements into three dimensions. Alternatively, configurable die press plates are used to selectively form a two-dimensional spring element sheet into three-dimensional spring contacts.
Abstract:
The present invention provides a clamp with spring contact elements to receive and secure a flat flex cable with exposed electrical traces to an electrical circuit such as on a printed circuit board. The clamp of the present invention has features for enhanced registration and alignment of exposed electrical traces on the flat flex cable to the spring contact elements in the clamp. Another aspect of the invention is the ability to connect high density contact arrays within the clamp to a circuit board via an array of contact pads on the opposite side of the substrate on which the spring contact elements are disposed. One exemplary application of the present invention is to connect a camera module in a cell phone to a printed circuit board or like electrical device in the phone.
Abstract:
The present invention provides a clamp with spring contact elements to receive and secure a flat flex cable with exposed electrical traces to an electrical circuit such as on a printed circuit board. The clamp of the present invention has features for enhanced registration and alignment of exposed electrical traces on the flat flex cable to the spring contact elements in the clamp. Another aspect of the invention is the ability to connect high density contact arrays within the clamp to a circuit board via an array of contact pads on the opposite side of the substrate on which the spring contact elements are disposed. One exemplary application of the present invention is to connect a camera module in a cell phone to a printed circuit board or like electrical device in the phone.
Abstract:
A compliant, scalable, thermal-electrical-mechanical, flexible electrical connector. In one configuration, the flexible electrical connector comprises a flexible substrate, a first and second conductive layer, and a plating contiguously applied over the conductive layers and holes through the substrate. The first and second conductive layers are adhered to opposite sides of the flexible substrate and have a plurality of raised contact elements in registration with at least a subset of the holes. At least some contact elements on the first and second conductive layers that oppose each other are in electrical communication with one another by way of the plating.