Abstract:
A stent graft is disclosed and can include a stent and a graft engaged with the stent. The graft can include an inner surface and an outer surface. Further, at least one of the inner surface and the outer surface can include a plurality of protrusions as viewed in cross section extending through a longitudinal axis.
Abstract:
A biopsy marker having radio-opaque properties that are derived in situ, based on a natural a biological response, such as for example, calcification, accumulation or tissue- concentration of a chemical agent so as to provide an imaging contrast. A biodegradable foam such as collagen foam or gelatin foam is embedded with a biological tissue that is susceptible to the calcification. Initially the marker can be imaged using ultrasound, but over time, the embedded material calcifies causing it to become visible under radiation imaging.
Abstract:
Novel implantable tissue fixation methods and compositions are disclosed. Methods and compositions of tissue, fixed using polymeric and/or variable length crosslinks, and di- or polymercapto compounds are described. Also described are the methods and compositions wherein the tissue is fixed using biodegradable crosslinkers. Methods and compositions for making radioopaque tissue are also described. Methods and compositions to obtain a degradable implantable tissue-synthetic biodegradable polymer composite are also described. Compositions and methods of incorporating substantially water-insoluble bioactive compounds in the implantable tissue are also disclosed. The use of membrane-like implantable tissue to make an implantable drug delivery patch are also disclosed. Also described are the compositions and methods to obtain a coated implantable tissue. Medical applications implantable tissue such as heart valve bioprosthesis, vascular grafts, meniscus implant, drug delivery patch are also disclosed.
Abstract:
A method and apparatus for molding polymeric structures in vivo is disclosed. The structures comprise polymers that may be heated to their molding temperature by absorption of visible or near-visible wavelengths of light. By providing a light source that produces radiation of the wavelength absorbed by the polymeric material, the material may be selectively heated and shaped in vivo without a corresponding heating of adjacent tissues or fluids to unacceptable levels. The apparatus comprises a catheter (10) having a shaping element (12) positioned near its distal end. An emitter (15) provided with light from at least one optical fiber (18) is positioned within the shaping element. The emitter serves to provide a moldable polymeric article (19) positioned on the shaping element with a substantially uniform light field, thereby allowing the article to be heated and molded at a desired treatment site in a body lumen.
Abstract:
Systems and methods for filling a fleshy fruit or vegetable with a filler are described. Embodiments include tool having an expandable member that is expandable to an expanded position to make a cavity in the fruit and collapsible to a collapsed position for withdrawal from the fruit, with the expandable member in the expanded state comprising a cross-section that is larger than the maximum diameter of the tool in the collapsed position. A cavity may be created without substantially affecting the natural visual appearance of the fruit or vegetable. Fillers and filling methods are disclosed.
Abstract:
Systems and methods for filling a fleshy fruit or vegetable with a filler are described. Embodiments include tool having an expandable member that is expandable to an expanded position to make a cavity in the fruit and collapsible to a collapsed position for withdrawal from the fruit, with the expandable member in the expanded state comprising a cross-section that is larger than the maximum diameter of the tool in the collapsed position. A cavity may be created without substantially affecting the natural visual appearance of the fruit or vegetable. Fillers and filling methods are disclosed.
Abstract:
A wall, for example the wall of a vascular graft, has multiple channels within it. The channels may be used to hold drugs or reinforcing fibers. The channels may have a predetermined roughness. The channels may be formed by coextrusion using a soluble material, for example, to define the channels and then dissolving them to open the channels in the extrudate.
Abstract:
Some aspects of this disclosure relate to a method for crosslinking a biological fluid comprising combining a biological fluid with a crosslinker to covalently crosslink proteins endogenous to the biological fluid to form a crosslinked gel. Examples of a biological fluid are blood, plasma, or serum.
Abstract:
A graft device comprising a layer of synthetic non-metallic material having a first surface and a second surface spaced apart from the first surface. The device further, includes a radiopaque marker at least partially embedded in the layer.
Abstract:
A method of incorporating drugs into an implantable medical device. In one variation, water insoluble drugs are used to form crystals within the porous structure of the device. Upon implantation, the drug crystals dissolve slowly and release the drug into the surrounding tissue. In one example, a water insoluble drug is crystallized within the pores of an ePTFE vascular graft.