Abstract:
The invention relates to a method for producing an adhesively metal-coated functional element comprising a base body and a metal coating which is applied thereto. The metal coating is not directly applied to the base body, but to a thin intermediate layer which is applied to the base body first by means of plasma polymerisation of a gas or steam containing acrylnitrile. The invention also relates to a metal-coated functional element comprising the aforementioned characteristics.
Abstract:
The proposed method of producing multifunctional multilayered connection substrates involves the following: the connection substrate is built up function by function from the various components, i.e. signal conducting substrate components (19), power supply substrate components (2), thermal substrate components (20), mechanical substrate components (7), and the arrangement of the components (4) and component-bearing substrate components as interdependent functions or modules, are designed and optimised separately before finally being assigned to spatially separated functional areas (inner/outer) of the circuit. The construction process involves connecting the modules to a circuit which forms the connection substrate. The substrate components with fine, compact, flexible and cool elements are assigned to the inner areas of the circuit, while those substrate components with coarse, rigid and warm elements and/or components are assigned to the outer areas of the circuit; a stiffening support material is applied in the outer area in such a way as to give the circuit a mechanical support structure which is designed to have rigid sections which merge into flexible sections. The circuit can be folded and/or wound according to the rigid and flexible sections. The mechanical support structure can be formed by separately manufactured device housing components or by the device housing.
Abstract:
The invention relates to, inter alia, a method for electrically contacting an object (30) surrounded by a membrane, using an electrode (10, 100). According to the invention, at least one electrode (100) having a conductive carrier (110) on which a plurality of nanoneedles (120) is arranged is used for the contacting, adjacent nanoneedles being interspaced by a distance smaller than the size of the object, and the object is brought into contact with the nanoneedles.
Abstract:
The invention relates to a method for producing an adhesively metal-coated functional element comprising a base body and a metal coating which is applied thereto. The metal coating is not directly applied to the base body, but to a thin intermediate layer which is applied to the base body first by means of plasma polymerisation of a gas or steam containing acrylnitrile. The invention also relates to a metal-coated functional element comprising the aforementioned characteristics.
Abstract:
The aim of the invention is to produce thin metal coatings and such structures on substrate supports of different structures. The lateral expansion of a metallic coating on each support can be predetermined with micrometer and submicrometer precision. The disclosed method enables flat and three-dimensional structures to be produced on smooth, planar or curved surfaces such as those required to reproduce letters or drawings. The method does not use any stamp printing techniques.
Abstract:
Die Erfindung bezieht sich u. a. auf ein Verfahren zum elektrischen Kontaktieren eines membranumhüllten Objekts (30) mit einer Elektrode (10, 100). Erfindungsgemäß ist vorgesehen, dass zum Kontaktieren mindestens eine Elektrode (100) mit einem leitfähigen Träger (110) verwendet wird, auf dem eine Vielzahl an Nanonadeln (120) angeordnet ist und auf dem benachbarte Nanonadeln zueinander einen Abstand aufweisen, der kleiner als die Größe des Objekts ist, und dass das Objekt mit den Nanonadel in Kontakt gebracht wird.
Abstract:
The invention describes a process and a device for wave and/or reflow soldering in the form of vapour-phase soldering for electronic units. In prior art processes and devices, either wave soldering or vapour-phase soldering alone can be performed in a single chamber. For electronic units which contain both components which are to be wave soldered and those to be reflow soldered, at least two soldering devices and two process steps are necessary. There is the further drawback that temperature-sensitive components impose either a limitation on the soldering temperature and hence the solders which can be used or laborious post-fitting. The invention performs wave soldering and vapour-phase soldering as a form of reflow soldering in a single chamber, in which an electronic unit can be placed and/or the portion of the volume of the chamber filled with the saturated vapour of a primary fluid can be controlled in such a way that, at the worst, temperature-sensitive components of the unit lie only partly in the saturated vapour and the connections of the electronic components of the unit are in the saturated vapour during soldering. The invention permits the soldering of surface-fitted, penetrating and temperature-sensitive components, e.g. large electrolytic capacitors, in a single chamber and in a single process stage and is therefore eminently suitable for economical mass production with high soldering quality.
Abstract:
Beschrieben wird ein Verfahren sowie eine Vorrichtung zum stoffschlüssigen Fügen von wenigstens zwei metallischen Anschlussstrukturen, die jeweils über einen ebenen oder gekrümmten Kontaktflächenbereich verfügen, von denen wenigstens ein Kontaktflächenbereich über eine dem Kontaktflächenbereich zuordenbare Kontaktfläche mit erhabenen Mikrostrukturelementen verfügt, bei dem beide Anschlussstrukturen gegenseitig derart in Kontakt gebracht werden, dass sich Stoffverbindungen zumindest zwischen den Mikrostrukturelementen und der gegenüberliegenden Anschlussstruktur ausbilden. Die Erfindung zeichnet sich dadurch aus, dass Mikrostrukturelemente auf der Kontaktfläche wenigstens einer Anschlussstruktur in Form weitgehend orthogonal zur Kontaktfläche erhabener, rippenzugartig und steilflankig ausgebildeter Kristallite vorgesehen werden, die jeweils über einen scharfkantigen Rippengrat verfügen, und deren Anordnung auf der Kontaktfläche und Ausbildung in Form und Größe einer stochastischen Verteilung unterliegen. Die wenigstens zwei Anschlussstrukturen werden derart zusammengefügt, dass die Mikrostrukturelemente einer Anschlussstruktur mit ihren Rippengraten in Kontakt treten mit dem Kontaktflächenbereich der anderen Anschlussstruktur.
Abstract:
Various methods exist for currentless deposition of gold coating on metal surfaces. In one method, the coating can be deposited on a base metal by means of cementing charge exchange. In other methods, the depositing solutions can additionally contain a reducing agent such that a gold coating can also be deposited on a precious metal e.g. gold. Known solutions, however, have a disadvantage in that the depositing rate is very slow when the pH value of the solution is between 6 and 7 and when the temperature is adjusted below 50 DEG C. However, such coating conditions are not suitable for processing, for example, alkali-soluble resistant conducting plates. To this end, a depositing bath is provided. According to the invention, said bath contains: a) at least one gold (I) compound, b) at least one reducing agent for the gold (I) compounds, and c) at least one solvent. d1) The gold (I) compound contains a complexity of gold (I) ions with a compound comprised of the amino acids group and the salts thereof, said compound having a formation constant of at least 10 for the complexation of gold (I) ions. d2) The solution additionally contains at least one compound comprised of the amino acids group or the salts thereof, said compound having a formation constant of at least 10 for the complexation of gold (I) ions.