Abstract:
The present invention provides a method for manufacturing micromachined devices on a substrate (10) comprising electrical circuitry, the micromachined devices comprising at least one micromachined structure, without affecting the underlying electrical circuitry. The method comprises providing a protection layer (15) on the substrate (10); providing on the protection layer (15) a plurality of patterned layers for forming the at least one micromachined structure, the plurality of patterned layers comprising at least one sacrificial layer (18); and thereafter removing at least a portion of the sacrificial layer (18) to release the at least one micromachined structure. The method furthermore comprises, before providing the protection layer (15), annealing the substrate (10) at a temperature higher than a highest temperature used during manufacturing of the micromachined device, annealing being for preventing gas formation underneath the protection layer (15) during subsequent manufacturing steps. The present invention also provides a micromachined device obtained by the method according to embodiments of the present invention.
Abstract:
Manufacturing a semiconductor device involves forming (200) a sacrificial layer where a micro cavity is to be located, forming (210) a metal layer of thickness greater than 1 micron over the sacrificial layer, forming (220) a porous layer from the metal layer, the porous layer having pores of length greater than ten times their breadth, and having a breadth in the range 10nm -500 nanometers. The pores can be created by anodising, electrodeposition or dealloying. Then the sacrificial layer can be removed (230) through the porous layer, to form the micro cavity, and pores can be sealed (240). Encapsulating MEMS devices with a porous layer can reduce costs by avoiding using photolithography for shaping the access holes since the sacrificial layer is removed through the porous membrane.
Abstract:
A method for forming narrow gaps, for ex ample gaps narrower than 400nm, e.g. less than 200nm or 100 nm, between elements of a MEMS structure is described, as well as a method for forming micromachined or MEMS structures comprising narrow gaps. The method may for example be used for forming high frequency micromechanical resonators comprising narrow transduction gaps.
Abstract:
Method and apparatus of to obtain as-deposited polycrystalline and low-stress SiGe layers. These layers are used in Micro Electro-Mechanical Systems (MEMS) devices or micromachined structures. Different parameters are analysed which effect the stress in a polycrystalline layer. The parameters include, without limitation: deposition temperature; concentration of semiconductors (e.g., the concentration of Silicon and Germanium in a SixGe1-x layer, with x being the concentration parameter); concentration of dopants (e.g., the concentration of Boron or Phosphorous); amount of pressure; and use of plasma. Depending on the particular environment in which the polycrystalline SiGe is grown, different values of parameters are used.
Abstract:
The present invention provides a method for manufacturing micromachined devices on a substrate (10) comprising electrical circuitry, the micromachined devices comprising at least one micromachined structure, without affecting the underlying electrical circuitry. The method comprises providing a protection layer (15) on the substrate (10); providing on the protection layer (15) a plurality of patterned layers for forming the at least one micromachined structure, the plurality of patterned layers comprising at least one sacrificial layer (18); and thereafter removing at least a portion of the sacrificial layer (18) to release the at least one micromachined structure. The method furthermore comprises, before providing the protection layer (15), annealing the substrate (10) at a temperature higher than a highest temperature used during manufacturing of the micromachined device, annealing being for preventing gas formation underneath the protection layer (15) during subsequent manufacturing steps. The present invention also provides a micromachined device obtained by the method according to embodiments of the present invention.
Abstract:
A MEMS capacitive switch is disclosed, the switch comprises a bottom electrode, a movable top electrode positioned above the bottom electrode and separated there from by a cavity, further comprising a layer of an amorphous semiconductor material in between the top and the bottom electrode and attached to one of these 2 electrodes preventing ohmic contact between both electrodes when moving the top electrode.
Abstract:
A method for forming narrow gaps, for ex ample gaps narrower than 400nm, e.g. less than 200nm or 100 nm, between elements of a MEMS structure is described, as well as a method for forming micromachined or MEMS structures comprising narrow gaps. The method may for example be used for forming high frequency micromechanical resonators comprising narrow transduction gaps.