Abstract:
Embodiments of the present disclosure generally relate to systems and methods for in-line measurement of alkali metal-containing structures or alkali ion-containing structures of, e.g., electrodes. In an embodiment, a system for processing an electrode is provided. The system includes a first processing chamber for forming an electrode comprising an alkali metal-containing structure. The system further includes a metrology station coupled to and in-line with the first processing chamber, the metrology station comprising: a source of radiation for delivering radiation to the alkali metal-containing structure, and an optical detector for receiving an emission of radiation emitted from the alkali metal-containing structure, and a processor configured to determine a characteristic of the alkali metal-containing structure of the electrode based on the emission of radiation.
Abstract:
A method and apparatus for fabricating electrodes used in energy storage devices are provided. In some implementations a surface of the electrode is activated for (a) a pre-treatment process to remove loosely held particles from the electrode surface; (b) a pre-treatment process to activate the surface of the electrode material for improved bonding or wetting for subsequently deposited materials; (c) a post-treatment of the pre-lithiation layer to improve subsequent bonding with additionally deposited layer, for example, passivation layers; and/or (d) a post-treatment of the pre-lithiation layer to improve/accelerate absorption of the lithium into the underlying electrode material.
Abstract:
Implementations described herein generally relate to low melting temperature metal or alloy metal deposition and processing. More particularly, the implementations described herein relate to methods and systems for low melting temperature metal or alloy metal deposition and processing for printed electronics and electrochemical devices. In yet another implementation, a method is provided. The method comprises exposing a molten metal source to a purification process to remove unwanted quantities of contaminants, delivering the filtered molten metal to a three dimensional printing device, and forming a metal film on a substrate by printing the filtered molten metal on the substrate. The purification process comprises delivering the molten metal to a filter assembly, wherein the filter assembly includes at least one of: a skimmer device, a metal mesh filter, and a foam filter, and filtering the molten metal through the filter assembly.
Abstract translation:这里描述的实施方式通常涉及低熔点金属或合金金属沉积和处理。 更具体地,本文描述的实施方式涉及用于印刷电子设备和电化学设备的低熔点金属或合金金属沉积和处理的方法和系统。 在又一个实现中,提供了一种方法。 该方法包括将熔融金属源暴露于净化过程以除去不需要量的污染物,将过滤后的熔融金属输送至三维印刷装置,并且通过将过滤后的熔融金属印刷在基板上而在基板上形成金属膜。 净化过程包括将熔融金属输送到过滤器组件,其中过滤器组件包括撇渣器装置,金属网过滤器和泡沫过滤器中的至少一个,并且过滤熔融金属通过过滤器组件。 p >
Abstract:
Implementations of the present invention relate generally to high-capacity energy storage devices and methods and apparatus for fabricating high-capacity energy storage devices. In one implementation, a method for forming a multi-layer cathode structure is provided. The method comprises providing a conductive substrate, depositing a first slurry mixture comprising a cathodically active material to form a first cathode material layer over the conductive substrate, depositing a second slurry mixture comprising a cathodically active material to form a second cathode material layer over the first cathode material layer, and compressing the as-deposited first cathode material layer and the second cathode material layer to achieve a desired porosity.
Abstract:
Methods and systems for the delivery of molten metals and metal alloys at a fixed volume are provided. The system includes an evaporation system having a fluid inlet port and a fluid delivery system. The fluid delivery system includes an ampoule operable to hold a source material. The ampoule includes a fluid outlet port and a gas inlet port. The fluid delivery system further includes a fluid delivery line operable to deliver the source material to the evaporation system. The fluid delivery line includes a first end fluidly coupled with the fluid outlet port and a second end fluidly coupled to the fluid inlet port. The fluid delivery line further includes a first isolation valve disposed along the fluid delivery line and a second isolation valve disposed along the fluid delivery line which define a fixed volume of the fluid delivery line.
Abstract:
Exemplary processing methods may include translating a lithium film beneath a first showerhead. The methods may include introducing an oxidizer gas through the first showerhead onto the lithium film. The methods may include forming an oxide monolayer on the lithium film. The oxide monolayer may be or include the oxidizer gas adsorbed on the lithium film. The methods may include translating the lithium film beneath a second showerhead after forming the oxide monolayer. The methods may include introducing a carbon source gas through the first showerhead onto the lithium film. The methods may also include converting the oxide monolayer into a carbonate passivation layer through reaction of the oxide monolayer with the carbon source gas.
Abstract:
Methods, systems, and apparatuses for coating flexible substrates are provided. A coating system includes an unwinding module housing a feed reel capable of providing a continuous sheet of flexible material, a winding module housing a take-up reel capable of storing the continuous sheet of flexible material, and a processing module arranged downstream from the unwinding module, The processing module includes a plurality of sub-chambers arranged in sequence, each configured to perform one or more processing operations to the continuous sheet of flexible material. The processing module includes a coating drum capable of guiding the continuous sheet of flexible material past the plurality of sub-chambers along a travel direction. The sub-chambers are radially disposed about the coating drum and at least one of the sub-chambers includes a deposition module. The deposition module includes a pair of electron beam sources positioned side-by-side along a transverse direction perpendicular to the travel direction.
Abstract:
A method and system for fabricating a pre-lithiated electrode structure are provided. The method includes supplying a first continuous web substrate from an unwinder roller to a winder roller. The first continuous web substrate includes a layer of lithium metal. The method further includes supplying a second continuous web substrate comprising a layer of patterned anode material adjacent to the first continuous web substrate. The first continuous web substrate and the second continuous web substrate are wound together on the unwinder roller, wherein a surface of the layer of anode material contacts a surface of the layer of lithium metal. Pressure is applied to the first continuous web substrate and the second continuous web substrate to pre-lithiate the patterned anode material, wherein applying pressure comprises tensioning at least one of the unwinder roller and the winder roller.
Abstract:
Implementations described herein generally relate to batteries for portable electronic devices. More specifically, implementations of the present disclosure relate to electrode assemblies, such as jelly roll-type electrode assemblies, and apparatus and methods for manufacturing electrode assemblies. In one implementation, a system for moisture removal is provided. The system comprises a tubular chamber body defining one or more processing regions. The tubular chamber body comprises a tubular outer wall and an interior wall that encloses an interior volume. The one or more processing regions include a pre-heat region and a drying region. The pre-heat region comprises a first variable frequency microwave source capable of producing microwave energy in a range from about 0.9 GHz to about 10 GHz. The drying region comprises a second variable frequency microwave source capable of producing microwave energy in a range from about 0.9 GHz to about 10 GHz and a vacuum source.
Abstract:
A method and apparatus for continuous web processing systems for pre- lithiating Li-ion battery substrates is provided. The modular processing system comprises a common transfer chamber body defining a transfer volume. The system further comprises a first vertical chamber body defining a first processing volume and positioned on the common transfer chamber body. The transfer volume is in fluid communication with the first processing volume. The system further comprises a second vertical chamber body defining a second processing volume and positioned on the common transfer chamber body. The transfer volume is in fluid communication with the second processing volume. The system further comprises a reel-to-reel system operable to transport a continuous flexible substrate having an electrode structure formed thereon. The continuous flexible substrate extends from the transfer volume, through the first processing volume, returning to the transfer volume, through the second processing volume, and returning to the transfer volume.