Abstract:
Disclosed herein is a method comprising patterning a second electrode of each of a plurality of electrode pairs onto a substrate; patterning a strip of a sacrificial layer directly across the second electrode; patterning a first electrode of each of the plurality of electrode pairs directly on the strip of the sacrificial layer; forming a nanogap channel by removing the strip of the sacrificial layer; wherein the strip of the sacrificial layer is sandwiched between and in direct contact with the first electrode and the second electrode before the strip is removed, and wherein at least a portion of the first electrode directly faces at least a portion of the second electrode. The method may involve planarization (e.g., CMP). The electrode pairs may be configured such that a redox active molecule can only diffuse back and forth therebetween while it is in the portion of the nanogap channel sandwiched therebetween.
Abstract:
Embodiments of the invention provide transducers capable of functioning as electronic sensors and redox cycling sensors. Transducers comprise two electrodes separated by a nanogap. Molecular binding regions proximate to and within the nanogap are provided. Methods of fabricating nanogap transducers and arrays of nanogap transducers are also provided. Arrays of individually addressable nanogap transducers can be disposed on integrated circuit chips and operably coupled to the integrated circuit chip.
Abstract:
Embodiments of the invention provide transducers capable of transducing redox active chemical signals into electrical signals. Transducers comprise two electrodes separated by a nanogap. At least one electrode is comprised of conducting diamond. Methods of fabricating nanogap transducers and arrays of nanogap transducers are provided. Arrays of individually addressable nanogap transducers can be disposed on integrated circuit chips and operably coupled to the integrated circuit chip.
Abstract:
Disclosed herein is a device comprising an electrode pair comprising a first electrode and a second electrode; a nanogap channel; wherein a portion of the nanogap channel is sandwiched between the first electrode and the second electrode; wherein at least a portion of the first electrode directly faces at least a portion of the second electrode, across the nanogap channel; wherein the portion of the first electrode and the portion of the second electrode are exposed to an interior of the nanogap channel; and wherein the first electrode or the second electrode comprises doped diamond, silicon carbide or a combination thereof. Also disclosed herein is a method comprising forming on a carrier substrate a first material layer comprising doped diamond, silicon carbide or a combination thereof; bonding the first material layer onto an electrical circuit.
Abstract:
Disclosed herein is a method comprising: depositing a second electrode of each of a plurality of electrode pairs onto a substrate, through an opening of one or more resist layers; depositing a strip of a sacrificial layer directly on the second electrode through the same opening of the one or more resist layer; depositing a first electrode of each of the plurality of electrode pairs directly on the strip of the sacrificial layer through the same opening of the one or more resist layer; and forming a nanogap channel by removing the strip of the sacrificial layer; wherein the strip of the sacrificial layer is sandwiched between and in direct contact with the first electrode and the second electrode before the strip is removed, and wherein at least a portion of the first electrode directly faces at least a portion of the second electrode.
Abstract:
An electronic fluidic interface for use with an electronic sensing chip is provided. The electronic fluidic interface provides fluidic reagents to the surface of a sensor chip. The electronic sensing chip typically houses an array of electronic sensors capable of collecting data in a parallel manner. The electronic fluidic interface is used, for example, as part of a system that drives the chip and collects, stores, analyzes, and displays data from the chip and as part of a system for testing chips after manufacture. The electronic fluidic interface is useful, for example, nucleic sequencing applications.