Abstract:
A microelectronic package having a first bumpless build-up layer structure adjacent an active surface and sides of a microelectronic device and a second bumpless build-up layer structure adjacent a back surface of the microelectronic device, wherein conductive routes are formed through the first bumpless build-up layer from the microelectronic device active surface to conductive routes in the second bumpless build-up layer structure and wherein through-silicon vias adjacent the microelectronic device back surface and extending into the microelectronic device are electrically connected to the second bumpless build-up layer structure conductive routes.
Abstract:
A method including forming a first portion of a build-up carrier on at least one first die, the at least one first die; coupling at least one second die to the first portion of the build-up carrier, the at least one second die separated from the first die by the at least one layer of conductive material disposed between layers of dielectric material; and after coupling the at least one second die to the first portion of the build-up carrier, forming a second portion of the build-up carrier on the at least one second die. An apparatus including a build-up carrier including including alternating layers of conductive material and dielectric material and at least two dice therein in different planes of the build-up carrier.
Abstract:
A three capacitor stack and associated methods are shown. An exemplary capacitor device may include a first capacitor stack that includes a first plurality of layers of reference electrodes interleaved with first capacitor electrodes, a second capacitor stack on the first capacitor stack that includes a second plurality of layers of reference electrodes interleaved with second capacitor electrodes, and a third capacitor stack on the second capacitor stack that includes a reference electrode and a third capacitor electrode. A respective layer of dielectric material is formed between the reference electrodes and the first capacitor electrodes, the second capacitor electrodes, and the third capacitor electrode.
Abstract:
A computer system assembly that includes a substrate and a first board mounted on the substrate. A flexible cable is secured to the first board. The computer system assembly further includes a second board mounted on the substrate. The second board includes a FPC connector. The FPC connector includes a body having a channel extending through the body such that the flexible cable may be positioned in the channel and pulled entirely through the body of the FPC connector. The FPC connector further includes a latching mechanism that secures the flexible cable within the channel once the flexible cable is pulled through the FPC connector. The first board and the second board are moved closer together as the flex cable is pulled through the FPC connector before at least one of the first board and the second board is mounted on the substrate.
Abstract:
The electronic assembly includes a printed circuit board; an electronic package that includes an electronic component mounted on a substrate, wherein the substrate is mounted to the printed circuit board; a first memory module mounted to the printed circuit board such that the first memory module is adjacent to the electronic package; a second memory module mounted to the printed circuit board; and a substrate bridge that electrically connects the first and second memory modules to the electronic package, wherein a lower surface of the substrate bridge is connected to an upper surface of the substrate and an upper surface of the first and second memory modules.
Abstract translation:该电子组件包括印刷电路板; 电子封装,其包括安装在基板上的电子部件,其中所述基板被安装到所述印刷电路板; 第一存储器模块,安装到所述印刷电路板,使得所述第一存储器模块与所述电子封装件相邻; 安装到所述印刷电路板的第二存储器模块; 以及将所述第一和第二存储器模块电连接到所述电子封装的衬底桥,其中所述衬底桥的下表面连接到所述衬底的上表面和所述第一和第二存储器模块的上表面。 p >
Abstract:
Donut-shaped Dynamic Random Access Memory (DRAM) includes a hole that fits around a processor, such that the DRAM and the processor are adjacent to one another on an Integrated Circuit (TC) package. In an embodiment, a heat spreader is mounted on top of the processor and covers a top of the DRAM without touching the DRAM.