Abstract:
Heat sink structures employing carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink, where the nanotubes are cut to essentially the same length over the surface of the structure, are disclosed. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface having high axial and lateral thermal conductivities.
Abstract:
Heat sink structures employing carbon nanotube or nanowire arrays exposed from both opposite surfaces of the structure to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. In one embodiment, the nanotubes are cut to essentially the same length over the surface of the structure. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
Abstract:
Heat sink structures employing mutli-layers of carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. In one embodiment, the nanotubes are cut to essentially the same length over the surface of the structure. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
Abstract:
An in-chip system and method for removing heat from integrated circuits is disclosed. One embodiment is a substrate with a front side and a back side. The front side of the substrate is capable of having formed thereon a plurality of transistors. A plurality of structures within the substrate contain a solid heat conductive media comprising carbon nanotubes and/or a metal, such as copper. At least some of the plurality of structures extend from the back side of the substrate into the substrate. In some embodiments, the carbon nanotubes are formed within the substrate using a catalyst.
Abstract:
Heat sink structures employing carbon nanotube or nanowire arrays to reduce the thermal interface resistance between an integrated circuit chip and the heat sink are disclosed. Carbon nanotube arrays are combined with a thermally conductive metal filler disposed between the nanotubes. This structure produces a thermal interface with high axial and lateral thermal conductivities.
Abstract:
This invention relates to the conduction of heat within the structure of an integrated circuit. The invention discloses a heat conduction device and a method of fabricating same, that utilizes thermally conductive vias to extract heat from local power generating regions of the substrate to top or bottom surfaces of the integrated circuit die. Conductive vias contain self-assembled carbon nanotubes for the enhancement of heat conduction out of the integrated circuit.
Abstract:
One aspect of the invention includes a copper substrate; a catalyst on top of the copper substrate surface; and a thermal interface material that comprises a layer containing carbon nanotubes that contacts the catalyst. The carbon nanotubes are oriented substantially perpendicular to the surface of the copper substrate. A Raman spectrum of the layer containing carbon nanotubes has a D peak at ∼1350 cm -1 with an intensity I D , a G peak at ∼1585 cm -1 with an intensity I G , and an intensity ratio I D / I G of less than 0.7 at a laser excitation wavelength of 514 nm. The thermal interface material has: a bulk thermal resistance, a contact resistance at an interface between the thermal interface material and the copper substrate, and a contact resistance at an interface between the thermal interface material and a solid-state device. A summation of these resistances has a value of 0.06 cm 2 K/W or less.
Abstract:
To achieve optimal thermal contact between opposing surfaces, it is necessary to align such surfaces so that maximum contact is achieved. In a semiconductor package, it is necessary to align the surface of a semiconductor integrated circuit (IC) and a heat sink surface, where the heat sink contains a nano-composite wire structure. By using a self-aligned structure that forces the alignment of the IC surface and the heat sink, maximum thermal contact between the two surfaces is achieved. The self-alignment of a pressure measurement device for same is also disclosed.
Abstract:
A method and apparatus for overcoming the problems of rapidly increasing complexity and cost and degrading reliability measures in connection with the cooling of a multi-chip mounted on an electronic printed circuit board. Accordingly, there are combined a) nano-structures materials for micro or nano-scale heat transfer from a substrate; b) small dimension heat sinks or heat spreaders matched to the mico-scale heat transfer to control the spread resistance; c) nano-scale cooling channel surfaces or micro-channel heat exchangers to improve heat transfer coefficients of the hot components to the cooling agent, air or liquid; and d) sharing of the active device such as a fan, pump, compressor, etc., that are responsible for moving the cooling agent in an active cooling embodiment. By providing appropriate passage for the cooling agent an effective and efficient cooling of the hot surfaces is achieved.