Abstract:
The present invention relates to a process for increasing xylose percentage of hydrolysate of a cellulosic or hemicellulosic material, comprising: (1) hydrolyzing the cellulosic or hemicellulosic material, optionally by a first enzyme composition comprising one or more enzymes having cellulase or hemicellulase activity; and (2) purifying the material of step (1) by adding a second enzyme composition comprising one or more oxidases.
Abstract:
A nanoparticle comprises water-insoluble polymer matrix and an indicator constituent(s), wherein the indicator constituent(s) is released from the nanoparticle only when the polymer matrix is degraded or broken, and then an indicative effect is triggered or enhanced. A nanoparticle-based method for screening a bioactive substance and a microfluidic-based screening system have also been disclosed.
Abstract:
Anti-programmed death-ligand l (PD-L1) antibodies, methods of using the same, therapeutic compositions thereof, and uses thereof in upregulating cell-mediated immune responses and treating T cell dysfunctional disorders are provided. The use of the anti-PD-L1 antibody as a diagnostic agent in vitro is also provided.
Abstract:
Methods for fabricating a nanopillared substrate surface include applying a polymer solution containing an amphiphilic block copolymer and a hydrophilic homopolymer to a substrate surface. The amphiphilic block copolymer and the hydrophilic homopolymer in the polymer solution self-assemble on the substrate surface to form a self-assembled polymer layer having hydrophobic domains adjacent to the substrate surface and hydrophilic domains extending into the self-assembled polymer layer. At least a portion of the hydrophilic domains may be removed to form a plurality of pores in the exposed surface of the self-assembled polymer layer. A protective layer may be deposited on the exposed surface as a mask for etching through the plurality of pores to form through-holes. A nanopillar-forming material may be deposited onto the substrate surface via the through-holes. Then, the remaining portion of the self-assembled polymer layer may be removed to expose a nanopillared substrate surface.
Abstract:
A medical device including an array of microneedles and a coating disposed on or within the microneedles and a method of making such a device are disclosed. The coating includes a peptide therapeutic agent and an amino acid. A method of stabilizing a peptide therapeutic agent with an amino acid on an array of microneedles is also disclosed. In some cases, the peptide therapeutic agent and the amino acid either both have a net positive charge or both have a net negative charge. In some cases, the peptide therapeutic agent is histidine.
Abstract:
Flow monitoring tasks are assigned to a set of switches in a split architecture network to optimize network-wide flow monitoring. The assignment maximizes the number of monitored flows and reduces overhead of the flow monitoring. A controller receives an estimated traffic volume for each path in the network. The controller calculates, for all of the switches and all of the paths, sampling fractions that maximize the number of the flows sampled by the switches. In response to a request for setting up a new flow to traverse one of the paths in the network, the controller assigns the new flow to one of the switches that are located on the one of the paths, based on the sampling fraction for the assigned switch and the one of the paths, the bandwidth constraint and the memory constraint.
Abstract:
A method for implementing a general packet radio service (GPRS) tunnel protocol (GTP) in a packet core (PC) of a third generation (3G) network having a split architecture where a control plane of the PC of the 3G network is in a cloud computing system, the cloud computing system including a controller, the controller to execute a plurality of control plane modules, the control plane to communicate with the data plane of the PC through a control plane protocol, the data plane implemented in a plurality of network elements of the 3G network by configuring switches implementing a data plane of the SGSN and GGSN and intermediate switches to establish a first and second GTP tunnel endpoint.
Abstract:
A method for fabrication of features of an integrated circuit and device thereof include patterning a first structure on a surface of a semiconductor device and forming spacers about a periphery of the first structure. An angled ion implantation is applied to the device such that the spacers have protected portions and unprotected portions from the angled ion implantation wherein the unprotected portions have an etch rate greater than an etch rate of the protected portions. The unprotected portions and the first structure are selectively removed with respect to the protected portions. A layer below the protected portions of the spacer is patterned to form integrated circuit features.
Abstract:
A method for forming a microelectronic structure uses a mask layer located over a target layer. The target layer may be etched while using the mask layer as an etch mask to form an end tapered target layer from the target layer. An additional target layer may be formed over the end tapered target layer and masked with an additional mask layer. The additional target layer may be etched to form a patterned additional target layer separated from the end tapered target layer and absent an additional target layer residue adjacent the end tapered target layer. The method is useful for fabricating CMOS structures including nFET and pFET gate electrodes comprising different nFET and pFET gate electrode materials.
Abstract:
The present invention is directed to a method for delivering oligonucleotides, particularly, peptide nucleic acids (PNAs) and short interfering RNA (siRNA), into cells utilizing the Anthrax toxin protective antigen (PA). The present application also provides a method for regulating gene expression in a living cell.