摘要:
In certain embodiments, a method of making a semiconductor structure suitable for transfer printing (e.g., micro-transfer printing) includes providing a support substrate (10) and disposing and processing one or more semiconductor layers on the support substrate to make a completed semiconductor device (22). A patterned release layer (30) and, optionally, a capping layer (60) are disposed on or over the completed semiconductor device and the patterned release layer or capping layer, if present, are bonded to a handle substrate (50) with a bonding layer (40). The support substrate is removed to expose the completed semiconductor device and, in some embodiments, a portion of the patterned release layer. In some embodiments, an entry path is formed to expose a portion of the patterned release layer. In some embodiments, the release layer is etched and the completed semiconductor devices transfer printed (e.g., micro-transfer printed) from the handle substrate to a destination substrate.
摘要:
A method for producing a plurality of semiconductor components is provided, wherein a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer and an active region is applied on a substrate. A contact structure is formed for electrically contacting the first and the second semiconductor layers. An auxiliary substrate is applied on the semiconductor layer sequence, so that the semiconductor layer sequence is arranged between the auxiliary substrate and the substrate. In a subsequent step, the substrate is removed from the semiconductor layer sequence. The semiconductor layer sequence is structured into a plurality of semiconductor bodies by forming at least one trench separating the semiconductor bodies. An anchoring layer is formed to cover the trench and vertical surfaces of the semiconductor bodies. A plurality of tethers is formed by structuring the anchoring layer in regions covering the trench. The auxiliary substrate is locally detached from the semiconductor bodies, wherein the tethers remain attached to the auxiliary substrate. At least one semiconductor body is selectively picked up by separating the tethers from the auxiliary substrate. Moreover, a semiconductor component produced by said method is provided.
摘要:
The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 0 0). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
摘要:
The present invention provides structures and methods that enable the construction of micro-LED chiplets formed on a sapphire substrate that can be micro- transfer printed. Such printed structures enable low-cost, high-performance arrays of electrically connected micro-LEDs useful, for example, in display systems. Furthermore, in an embodiment, the electrical contacts for printed LEDs are electrically interconnected in a single set of process steps. In certain embodiments, formation of the printable micro devices begins while the semiconductor structure remains on a substrate. After partially forming the printable micro devices, a handle substrate is attached to the system opposite the substrate such that the system is secured to the handle substrate. The substrate may then be removed and formation of the semiconductor structures is completed. Upon completion, the printable micro devices may be micro transfer printed to a destination substrate.
摘要:
The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 μm to 50 μm), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
摘要:
A printed electrical connection structure includes a substrate having one or more electrical connection pads and a micro-transfer printed component having one or more connection posts. Each connection post is in electrical contact with a connection pad. A resin is disposed between and in contact with the substrate and the component. The resin has a reflow temperature less than a cure temperature. The resin repeatedly flows at the reflow temperature when temperature-cycled between an operating temperature and the reflow temperature but does not flow after the resin is exposed to a cure temperature. A solder can be disposed on the connection post or the connection pad. After printing and reflow, the component can be tested and, if the component fails, another component is micro-transfer printed to the substrate, the resin is reflowed again, the other component is tested and, if it passes the test, the resin is finally cured.
摘要:
A method for producing a plurality of semiconductor components is provided, wherein a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer and an active region is applied on a substrate. A contact structure is formed for electrically contacting the first semiconductor layer and the second semiconductor layer. The semiconductor layer sequence is structured into a plurality of semiconductor bodies by forming at least one trench separating the semiconductor bodies. An insulating layer is formed to cover the trench and vertical surfaces of the semiconductor bodies. A plurality of tethers is formed by structuring the insulating layer in regions covering the trench. The substrate is locally detached from the semiconductor bodies, wherein the tethers remain attached to the substrate. At least one semiconductor body is selectively picked up by separating the tethers from the substrate. Moreover, a semiconductor component produced by said method is provided.
摘要:
The disclosed technology relates generally hybrid displays with pixels that include both inorganic light emitting diodes (ILEDs) and organic light emitting diodes (OLEDs). The disclosed technology provides a hybrid display that uses a mixture of ILEDs and OLEDs in each pixel. In certain embodiments, each pixel in the hybrid display includes a red ILED, a blue ILED, and a green OLED. In this instance, the OLED process would not require a high resolution shadow mask, thereby enhancing the manufacturability of OLEDs for larger format displays. Additionally, the OLED process in this example would not require any fine lithography. The OLED subpixel (e.g., green subpixel) can be larger and the ILEDs can be small (e.g., micro-red and micro-blue ILEDs). The use of small ILEDs allows for other functions to be added to the pixel, such as micro sensors and micro integrated circuits.
摘要:
A concentrator-type photovoltaic module includes a plurality of photovoltaic cells having respective surface areas of less than about 4 square millimeters (mm) electrically interconnected in series and/or parallel on a backplane surface, and an array of concentrating optical elements having respective aperture dimensions of less than about 30 mm and respective focal lengths of less than about 50 mm. The array of concentrating optical elements is positioned over the photovoltaic cells based on the respective focal lengths to concentrate incident light on the photovoltaic cells, and is integrated on the backplane surface by at least one spacer structure on the backplane surface. Related devices, operations, and fabrication methods are also discussed.
摘要:
The disclosed technology relates generally to designs and methods of assembling functional devices utilizing compound micro-assembly. This method involve the the formation of functional device elements on native substrates (302). The functional device elements are thereafter assembled on an intermediate substrate and electrically interconnected so as to form an array of individual micro-systems (304). The micro-systems are consequently transferred (one or more at a time) to a destination or device substrat, where they are electrically interconnected so as to form a macro-system (308). Example of a macro-systems is a display device wherein, each micro-system may be an individual pixel containing red, blue, and green micro LEDs and a silicon drive circuit as functional device elements. An array of pixels may be formed by micro-transfer printing functional device elements onto the intermediate substrate and electrically connecting them via fine lithography, then the individual pixels may be micro-transfer printed onto the destination substrate.