Abstract:
A hemodialysis machine includes a main body and a door connected to the main body. The door and the main body cooperate to define a non-removable chamber. The door is openable relative to the main body of the hemodialysis machine to allow a salt to be placed into the non-removable chamber when the door is in an open position. The main body further includes a fluid inlet, a fluid outlet, and a pumping mechanism. The fluid inlet and the fluid outlet are in fluid communication with the non-removable chamber. The pumping mechanism is configured to deliver a fluid from a fluid source to the non-removable chamber through the fluid inlet to mix with salt within the non-removable chamber to form a salt solution that exits the non-removable chamber through the fluid outlet.
Abstract:
Water systems, medical equipment, and apparatus for thermal disinfection comprise a control unit which starts the disinfection of a fluid path by controlling a heating unit to heat water and controlling an actuator to enable heated water to flow into the fluid path. The control unit reads the temperature as measured by a temperature sensor during the disinfection and calculates an achieved disinfection dose. The achieved disinfection dose is compared with a set disinfection dose and the disinfection is discontinued if the achieved disinfection dose corresponds to the set disinfection dose.
Abstract:
A drain cassette for a dialysis unit has a fluid channel between venous and arterial connection ports, and a valve may controllably open and close fluid communication between a drain outlet port and the venous connection port or the arterial connection port. A blood circuit assembly and drain cassette may be removable from the dialysis unit, e.g., by hand and without the use of tools. A blood circuit assembly may include a single, unitary member that defines portions of a pair of blood pumps, control valves, channels to accurately position flexible tubing for an occluder, an air trap support, and/or other portions of the assembly. A blood circuit assembly engagement device may assist with retaining a blood circuit assembly on the dialysis unit, and/or with removal of the assembly. An actuator may operate a retainer element and an ejector element that interact with the assembly.
Abstract:
A method for inlet temperature monitoring for centralized heat disinfection of dialysis machine inlet lines is described. The method can be used, for example, for a dialysis system which has a central water processing system used at a multiple patient dialysis treatment clinic or center. A central water processing system and a plurality of dialysis machines having fluid inlets are fluidly connected to a water supply loop which circulates heated water from the central water processing system to the dialysis machines and back to the central water processing system. Water temperatures are sensed with temperature sensors at the fluid inlets of the dialysis machines on the loop, and data on the sensed temperatures is communicated to a process controller capable of comparing the sensed temperatures to a predetermined value or value range selected for disinfection, and resolving any discrepancies by issuing an alarm and/or controlling a temperature controller to adjust water temperature of water at the central water processing system. A dialysis system for centralized heat disinfection of dialysis machine inlet lines of dialysis machines supplied with water by a central water processing system also is provided.
Abstract:
A drain cassette for a dialysis unit has a fluid channel between venous and arterial connection ports, and a valve may controllably open and close fluid communication between a drain outlet port and the venous connection port or the arterial connection port. A blood circuit assembly and drain cassette may be removable from the dialysis unit, e.g., by hand and without the use of tools. A blood circuit assembly may include a single, unitary member that defines portions of a pair of blood pumps, control valves, channels to accurately position flexible tubing for an occluder, an air trap support, and/or other portions of the assembly. A blood circuit assembly engagement device may assist with retaining a blood circuit assembly on the dialysis unit, and/or with removal of the assembly. An actuator may operate a retainer element and an ejector element that interact with the assembly.
Abstract:
A method and apparatus for priming an extracorporeal blood circuit, in which the patient end of an arterial line (79) is connected to a first discharge port (61), and the patient end of a venous line (87) is connected to a second discharge port (62). The two discharge ports are connected to a used dialysate line which connects a dialyser (33) to a drain. The arterial and venous lines are filled with a priming fluid, while the air contained in the arterial and venous lines is evacuated partly through the first discharge port and partly through the second discharge port. Two check valves (65, 66) prevent flow from the used dialysate line towards the two discharge ports. The invention reduces the risk of errors on the part of an operator readying the priming configuration, as well as the risk of contamination of the extracorporeal circuit during the priming phase.
Abstract:
A method and apparatus of priming or rinse back of an extracorporeal circuit using a dialysis machine comprising a dialysis liquid preparation system. The dialysis machine is used to prepare a saline solution on-line. The extracorporeal circuit is connected to the dialysis machine and primed with the saline solution.
Abstract:
An automated peritoneal dialysis system (A) for performing continuous preritoneal dialysis is disclosed which includes a supply (B) of unsterilized dialysate for supplying large volumes of dialysate on demand and a fluid circuit for delivering dialysate from the supply to the patient's peritoneal cavity and draining spent dialysate from the periotoneal cavity. A dialysate sterilization component (C) includes at least one in-line sterilization filter assembly (E, F) disposed in the inflow line segment for real time sterilization of the unsterilized dialysate during flow of dialysate prior to patient delivery. A filter test component (D) is operatively associated with the sterilization filter assembly (E, F) for conducting a real time integrity test on the filter assembly (E, F) to test for a filter failure which would allow contaminants into the dialysate prior to patient delivery.