Abstract:
This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanois, the empirical formula in which M is selected between H+, at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
Abstract:
The air separation unit includes a single adsorption bed downstream of a reversing blower and configured to operate on the principle of vacuum swing adsorption. An optimal ambient air pressure to vacuum pressure ratio within an adsorber vessel downstream of the reversible blower is identified. When the air separation unit is operated at ambient conditions where ambient air pressure is different, such as at higher altitude (or lower altitude) a pressure ratio across the blower when drawing a vacuum on the adsorption bed is maintained for optimal blower power to oxygen production performance. Time for recovery of the adsorption bed can also be modified due to the lower absolute pressure achieved within the adsorption bed when the pressure ratio across the blower is maintained. An ASU is thus provided which is optimized for performance at various different altitudes without requiring modification of equipment within the ASU.
Abstract:
Die Erfindung betrifft ein Verfahren zur Gewinnung von Helium aus einem Prozessgas, wobei zumindest die folgenden Schritte ausgeführt werden: Zuführen eines heliumhaltigen Prozessgases mit einem Druck von weniger als 15 bar zu einer ersten Membrantrennstufe (2) mit einer ersten Membran (4), welche für Helium leichter permeabel ist als für zumindest eine weitere im Prozessgas enthaltene Komponente; Leiten eines ersten Retentatstroms zu einer zweiten Membrantrennstufe (3) mit einer zweiten Membran (5), welche für Helium leichter permeabel ist als für zumindest eine weitere im Prozessgas enthaltene Komponente; Abtrennen von Helium aus einem ersten heliumhaltigen Permeatstrom mittels Druckwechseladsorption unter Erzeugung eines heliumhaltigen Produktstroms; und Rückführen eines zweiten heliumhaltigen Permeatstroms zur ersten Membrantrennstufe (2) sowie Rückführen eines Spülgases der Druckwechseladsorption zur ersten Membrantrennstufe (2).
Abstract:
Methods for separating an aromatic compound from a lube base stock are provided herein. The method includes contacting a lube base stock containing an aromatic compound with an organosilica material as provided herein.
Abstract:
Methods for coating a substrate with a coating including an adsorbent material and a binder comprising an organosilica material which is a polymer comprising independent units of Formula [Z 3 Z 4 SiCH 2 ] 3 (I), wherein each Z 3 represents a hydroxyl group, a C 1 -C 4 alkoxy group or an oxygen atom bonded to a silicon atom of another unit or an active site on the substrate and each Z 4 represents a hydroxyl group, a C 1 -C 4 alkoxy group, a C 1 -C 4 alkyl group, an oxygen atom bonded to a silicon atom of another unit or an active site on the substrate are provided. Methods of gas separation are also provided.
Abstract translation:用包含吸附剂材料和粘合剂的涂层涂覆基材的方法包括有机硅材料,其为包含式[Z 3 Z 4 SiCH 2] 3(I)的独立单元的聚合物,其中每个Z 3表示羟基,C 1 -C 4烷氧基 或与基板上的另一单元或活性部位的硅原子键合的氧原子,各Z4表示羟基,C1-C4烷氧基,C1-C4烷基,与硅原子键合的氧原子 提供了衬底上的另一单元或活性位点。 还提供了气体分离方法。
Abstract:
A method of forming the highly selective ultra-small pore amorphous adsorbent includes introducing an ion-exchange material to a sodium aluminosilicate zeolite such that an ion-exchanged zeolite forms, calcinating the ion-exchanged zeolite at a calcination temperature such that the ion-exchanged zeolite collapses and forms the decationized amorphous adsorbent, and introducing a back ion-exchange material to the decationized amorphous adsorbent such that the highly selective ultra-small pore amorphous adsorbent forms. The highly selective ultra-small pore amorphous adsorbent has a pore aperture size operable to permit carbon dioxide to adsorb into the amorphous adsorbent and operable to deny methane from adsorbing into the amorphous adsorbent.
Abstract:
This invention refers to a microporous crystalline material of zeolitic nature that has, in its calcined state and in the absence of defects in its crystalline matrix manifested by the presence of silanois, the empirical formula x (M 1/n XO 2 ): y YO 2 : g GeO 2 : (1-g) SiO2 in which M is selected between H + , at least one inorganic cation of charge +n, and a mixture of both, X is at least one chemical element of oxidation state +3, Y is at least one chemical element with oxidation state +4 different from Si, x takes a value between 0 and 0.2, both included, y takes a value between 0 and 0.1, both included, g takes a value between 0 and 0.5, both included that has been denoted ITQ-55, as well as a method for its preparation. This invention also relates to uses of the crystalline material of zeolitic nature for adsorption of fluid components, membrane separation of fluid components, storage of fluid components, and catalysis of various conversion reactions.
Abstract:
The present invention concerns a composite oxide based on cerium oxide, silicon oxide and titanium oxide. The present invention also concerns a process to obtain these composites, a catalytic system comprising said composite oxides and their use for the treatment of exhaust gases from internal combustion, notably by bringing into contact exhaust gases from internal combustion engines with these catalytic systems.