Abstract:
Erfindungsgemäß ist ein Verfahren zum Kodieren bei der Wärmebehandlung eines Werkstücks vorgesehen. Dieses Verfahren umfasst die folgenden Schritte: Bereitstellen eines Werkstücks, Erwärmen des Werkstücks mit einer Wärmequelle, um das Werkstück einer Wärmebehandlung zu unterziehen. Das Verfahren zeichnet sich dadurch aus, dass zu zumindest einem vorbestimmten Zeitintervall während des Erwärmens dem Werkstück eine Kodierungskomponente oder ein eine Kodierungskomponente enthaltendes Kodierungsgas derart zugesetzt ist, dass die Verwendung der Kodierungskomponente im fertigen Objekt detektierbar ist, wobei die gasförmige Kodierungskomponente ein oder mehrere Isotope zumindest eines Gases umfasst und der Anteil des zumindest einen Isotops gegenüber dem natürlich vorkommenden Anteil dieses Isotops im Gas verändert ist und Protokollieren von Kodierungsinformationen, welche die Kodierungsinformationen und deren Ort im Werkstück beschreiben.
Abstract:
Catalyst extraction from polycrystalline diamond table may be achieved by treating with a halogen (in the gas phase or dissolved in a nonpolar organic solvent) to convert the catalyzing material to a salt. Then, polar organic solvents may optionally be used to leach the salt from the polycrystalline diamond table. The polycrystalline diamond (with the salt of the catalyzing material present or at least partially leached therefrom) may be brazed to a hard composite substrate to produce a cutter suitable for use in a matrix drill bit.
Abstract:
A chromium-iron alloy comprises in weight %, 1 to 3% C, 1 to 3% Si, up to 3% Ni, 25 to 35% Cr, 1.5 to 3% Mo, up to 2% W, 2.0 to 4.0% Nb, up to 3.0% V, up to 3.0% Ta, up to 1.2% B, up to 1% Mn and 43 to 64% Fe. In a preferred embodiment, the chromium-iron alloy comprises in weight %, 1.5 to 2.3 % C, 1.6 to 2.3% Si, 0.2 to 2.2% Ni, 27 to 34% Cr, 1.7 to 2.5% Mo, 0.04 to 2% W, 2.2 to 3.6% Nb, up to 1% V, up to 3.0% Ta, up to 0.7% B, 0.1 to 0.6% Mn and 43 to 64% Fe. The chromium-iron alloy is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.
Abstract:
A chromium-iron alloy comprises in weight %, 1 to 3% C, 1 to 3% Si, up to 3% Ni, 25 to 35% Cr, 1.5 to 3% Mo, up to 2% W, 2.0 to 4.0% Nb, up to 3.0% V, up to 3.0% Ta, up to 1.2% B, up to 1% Mn and 43 to 64% Fe. In a preferred embodiment, the chromium-iron alloy comprises in weight %, 1.5 to 2.3 % C, 1.6 to 2.3% Si, 0.2 to 2.2% Ni, 27 to 34% Cr, 1.7 to 2.5% Mo, 0.04 to 2% W, 2.2 to 3.6% Nb, up to 1% V, up to 3.0% Ta, up to 0.7% B, 0.1 to 0.6% Mn and 43 to 64% Fe. The chromium-iron alloy is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.
Abstract:
The invention relates to a method for producing a target by means of thermal projection, especially by plasma projection, said target comprising at least one compound selected from refractive metals, resistive oxides, and volatile oxides. The method is characterised in that at least a fraction of said compound in the form of a powder composition of the compound is projected by thermal projection onto at least part of the surface of the target, under a controlled atmosphere, and powerful cryogenic cooling jets directed towards the target during its construction are used.
Abstract:
Procédé de réalisation d'une cible par projection thermique, notamment par projection plasma, ladite cible comprenant au moins un composé choisi par les métaux réfractaires, les oxydes résistifs, les oxydes volatils caractérisé en ce qu'on projette par projection thermique sur au moins une portion de surface de la cible, au moins une fraction dudit composé sous forme d'une composition de poudre dudit composé, sous atmosphère contrôlée, et en ce qu'on utilise des jets refroidisseurs cryogéniques puissants dirigés vers la cible pendant sa construction.
Abstract:
A method for modifying a ceramic matrix component is disclosed including identifying a non-conforming region of a composite component capable of operating in a gas turbine engine; removing at least a portion of the non¬ conforming region to create an exposed surface of the composite component; preparing a preform in response to the removing at least a portion of the non¬ conforming region; applying a reactive constituent surface region to at least one of the exposed surface of the composite component and the preform, the reactive constituent surface region being capable of producing a non-equilibrium condition; positioning the preform to provide a contact region between the exposed surface of the composite component and the preform proximate the reactive constituent surface region; and reacting the reactive constituent surface region in an equilibrium reaction at the contact region to form a bond structure between the exposed surface of the composite component and the preform.
Abstract:
The invention relates to a process for producing an alloy based on titanium aluminides. Here, metal droplets are obtained from a titanium aluminide metal melt, in particular using the gas atomization process, the metal droplets are enriched with halogens by exposure to a halogen-containing gas so that halogen-enriched titanium aluminide metal droplets are obtained and the alloy is subsequently formed from the halogen-enriched titanium aluminide metal droplets by pressing, preferably hot isostatic pressing. In further embodiments of the process, pulverulent titanium aluminide, in particular titanium aluminide metal powder, is heated in a, preferably closed, vessel for a predetermined time, where a halogen-enriched atmosphere has been or is provided in the vessel so that halogen-enriched titanium aluminide metal powder is formed during the heating time, or metal droplets are obtained from a titanium aluminide metal melt, in particular using the gas atomization process, the metal droplets are enriched with halogens by exposure to a halogen-containing gas so that halogen-enriched titanium aluminide metal droplets are formed, with the alloy being subsequently formed in each case from the halogen-enriched titanium aluminide metal droplets by pressing, preferably hot isostatic pressing.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Hartmetallkörpers mit einer Beschichtung oder Beschichtungslage aus zumindest überwiegend kubischem Bornitrid. Um eine gut haftende Schicht mit überwiegendem Anteil an kubischem Bornitrid und geringen Schichtspannungen zu erreichen, ist erfindungsgemäß vorgesehen, dass das Verfahren folgende Schritte umfasst: a) Bereitstellen eines Hartmetallkörpers enthaltend etwa gleichmäßig verteilt Hartstoff mit Wolframcarbid und zumindest einem Carbid, Nitrid und/oder Carbonitrid eines oder mehrerer zusätzlicher Metalle ausgewählt aus den Gruppen IV B, V B und VI B des Periodensystems der Elemente sowie Eisen und/oder Nickel und/oder Cobalt als Bindemetall(e), wobei ein Hartstoffanteil mehr als 60 Gewichtsprozent beträgt, b) Behandeln des Hartmetallkörpers, um an einer mit Bornitrid zu beschichtenden Oberfläche des Hartmetallkörpers eine Zone zu erhalten, die ein Carbonitrid, Nitrid, Bornitrid, Borcarbid und/oder Borcarbonitrid der zusätzlichen Metalle als Hauptbestandteil(e) enthält, c) Aufbringen von Keimen aus Diamant und/oder kubischem Bornitrid auf die in Schritt b) erhaltene Zone, d) Abscheiden einer Bornitridschicht auf der bekeimten Zone.
Abstract:
The invention describes alloyed zinc powders for alkaline batteries. The powders have a high pyknometer density as a consequence of the presence of only a limited quantity of pores. This high pyknometer density results in strongly reduced gassing after partial discharge of the powders. Also, a process for the manufacturing of a zinc alloy powder for alkaline batteries is disclosed, comprising the step of atomising a zinc alloy, characterised in that the atomising process has a flow rate of at least 700 kg/h, and preferably at least 1000, 1100 or even 1650 kg/h. In one embodiment, the atomising process is performed in a controlled atmosphere, wherein the oxygen content is less than 4 % by volume, and preferably between 0.2 and 3.5 %. The atomising process can be a centrifugal atomisation process. In the atomising process, the zinc alloy consists either of: a) 0.005 - 2 % by weight of indium, and 0.005 - 0.2 % by weight of either one of Al and Bi; or b) 0.005 - 2 % by weight of indium, and 0.005 - 0.2 % by weight of Bi, and 0.001 - 0.5 % of either one or both of Al and Ca; or c) 0.005 - 2 % by weight of either one or both of Bi and Al; and 0 - 0.5 % by weight of Pb, the remainder being zinc.