Abstract:
Sensoranordnung zur optischen Erfassung von mindestens einem Objekt, umfassend eine Aussendeeinheit, um mindestens einen Lichtstrahl auszusenden, eine steuerbare Ablenkeinheit, um den Lichtstrahl abzulenken, eine Empfangseinheit, um mindestens einen von dem zu erfassenden Objekt reflektierten Anteil des ausgesendeten und abgelenkten Lichtstrahl zu empfangen, eine Auswerteeinheit, um den empfangenen Anteil auszuwerten, um ein 3D-Bild zu erzeugen, um das Objekt zu erfassen.
Abstract:
The invention relates to a method for operating a motor vehicle (10), comprising the following steps: sensing a spatial position of at least one first body part (18) of a vehicle occupant (20) arranged in a sensing range (16) of a sensing device (14) of the motor vehicle (10) in relation to the motor vehicle (10) by means of the sensing device (14); providing an anthropometric data model that comprises data regarding the dimensions of predetermined body parts of a human and regarding the positioning of the body parts in relation to each other; wherein a spatial position of at least one second body part (26, 28) of the same vehicle occupant (20) that is arranged outside of the sensing range (16) of the sensing device (14) is determined in consideration of the sensed spatial position of the first body part (18) and in consideration of the anthropometric data model; and controlling at least one functional unit (32, 34, 36, 38) of the motor vehicle (10) in consideration of the determined spatial position of the second body part (26, 28). The invention further relates to a system (12) for operating a motor vehicle (10).
Abstract:
An occupant position sensor (110-114, 215) using either ultrasonic, microwave or optical technologies, or seat belt spool out (501) and seat position sensors (601), are used as inputs to the primary vehicle crash sensor circuit to permit the longest possible sensing time before the occupant gets proximate to the airbag (104) and is in danger of being injured by the deploying airbag. The sensor further disables the inflatable restraint system (104) if the occupant is in danger of being injured by the system deployment. Separate systems are used for the driver and passenger to permit the optimum decision to be made for each occupant.
Abstract:
Die Erfindung betrifft ein Verfahren zum Betreiben eines Kraftwagens (10), mit den Schritten: Erfassen einer Raumlage von zumindest einer ersten in einem Erfassungsbereich (16) einer Erfassungseinrichtung (14) des Kraftwagens (10) angeordneten Körperpartie (18) eines Fahrzeuginsassen (20) gegenüber dem Kraftwagen (10) mittels der Erfassungseinrichtung (14); Bereitstellen eines anthropometrischen Datenmodells, welches Daten bezüglich der Abmaße von vorbestimmten Körperpartien eines Menschen und der Positionierung der Körperpartien zueinander umfasst; wobei eine Raumlage von zumindest einer zweiten Körperpartie (26, 28) desselben Fahrzeuginsassen (20), welche außerhalb des Erfassungsbereichs (16) der Erfassungseinrichtung (14) angeordnet ist, unter Berücksichtigung der erfassten Raumlage der ersten Körperpartie (18) und des anthropometrischen Datenmodells ermittelt wird; zumindest eine Funktionseinheit (32, 34, 36, 38) des Kraftwagens (10) unter Berücksichtigung der ermittelten Raumlage der zweiten Körperpartie (26, 28) angesteuert wird. Des Weiteren betrifft die Erfindungen ein System (12) zum Betreiben eines Kraftwagens (10).
Abstract:
Die Entwicklung komplexer Kraftfahrzeuginsassen-Schutzsysteme hat in den letzten Jahren mit zu einer erheblichen Reduktion tödlich verlaufender Verkehrsunfälle beigetragen. Schwierigkeiten in der Steuerung derartiger Systeme liegen jedoch nach wie vor in der Entscheidung, ob und wann bestimmte Kraftfahrzeuginsassen-Schutzsysteme ausgelöst werden sollen. Es wird daher ein Verfahren und eine Vorrichtung angegeben, bei welchem mittels physikalischer Messgrößen (110), insbesondere mittels gemessener Beschleunigungssignale, Drucksignale oder Körperschallsignale, bereits zu einem früheren Zeitpunkt eines Unfalls auf die zu erwartende Schwere des Unfalls (210), insbesondere die zu erwartende Verletzungsschwere von Kraftfahrzeuginsassen, geschlossen wird. Aus dieser vorhergesagten Unfallschwere (210) wird eine Entscheidung abgeleitet, ob bestimmte Kraftfahrzeuginsassen-Schutzsysteme ausgelöst werden sollen. Das Verfahren liefert einen analogen Ausgangswert und ist somit auch zur Steuerung analoger Kraftfahrzeuginsassen-Schutzsysteme, beispielsweise von Airbags mit analogen Gasgeneratoren, geeignet. Weiterhin ist das Verfahren auf einfache Weise auf neue Kraftfahrzeuge und neue Kraftfahrzeuginsassen-Schutzsysteme adaptierbar.
Abstract:
A roll angular velocity sensor (20) and an occupant sensor (42, 56.1, 56.2, 60.1, 60.2) are operatively coupled to a processor (26), which provides for detecting a rollover condition responsive to a measure of roll angular velocity and controlling a safety restraint system (30, 30.1, 30.2, 32.1, 32.2, 36.1, 36.2, 38.1, 38.2, 39.1, 39.2, 40.1, 40.2) responsive thereto, wherein a detection criteria associated with the rollover detection process is responsive to a signal from the occupant sensor. In one embodiment, a closure time is estimated from estimates or measurements of occupant velocity or acceleration, and the estimated closure time is compared with a threshold. If the estimated closure time is less than the threshold, activation of the safety restraint system is either inhibited or advanced relative to that otherwise provided by the rollover detection process alone. Otherwise, the activation may be delayed to provide additional time for the rollover detection.
Abstract:
A vehicle air-bag minimum enforcement apparatus for use with a first air-bag and a first seat mounted within a passenger compartment of a vehicle, the apparatus including a first seat position adjusting mechanism to movably connect the first seat with respect to the vehicle, and to allow the first seat to move relative to the first air-bag along a first axis between a forward-most position and a rearward-most position, in which the forward-most position is a position of the first seat in which a distance between a passenger seated in the first seat and the first air-bag is equal to a minimum clearance distance, displacement of the first seat away from the forward-most position increasing the distance between the first seat and the first air-bag, and the first air-bag is fixedly positioned with respect to one of a steering wheel assembly for a driver and a dashboard arrangement for a passenger other than the driver, in which the minimum clearance distance is the distance between a reference line of a seat-back of the first seat less a predetermined protrusion of an occupant. The predetermined protrusion of the occupant is one of a fixed distance, and an actual occupant protrusion. The actual occupant protrusion is determinable based on an extracted seat belt length.
Abstract:
The invention relates to a sensor array for image recognition, comprising several optical sensor elements (R, G, B) of a first type that are disposed in the shape of a grid and react to light in the visible wavelength range, wherein additional sensor elements (IR) of a second type are provided in addition to the sensor elements (R, G, B) of the first type, which react to light in the invisible wavelength range.
Abstract:
A method and system for determining a size and pose of an occupant (305, 310, 315) within a vehicle interior. In one embodiment, the method includes receiving one or more images (figure 3) of a vehicle interior from a camera (114). The method also includes classifying interior regions (130, 132, 134, 136, 138) of the vehicle interior (100) in the one or more images. The method also includes identifying an occupant (305, 310, 315) in the one or more images based on the classification of the interior regions (130, 132, 134, 136, 138) of the vehicle interior (100). The method also includes determining a size range of the occupant (305, 310, 315) based on the classification (404) of the interior regions of the vehicle interior (100). The method also includes determining a pose of the occupant (305, 310, 315) based on the classification (404) of the interior regions of the vehicle interior (100). The method also includes controlling one or more vehicle systems (122, 124, 126, 128) based on the size and the pose of the occupant (305, 310, 315).