Abstract:
An aircraft jet propulsion system is disclosed. The aircraft jet propulsion system may comprise a thermoelectric generator array ("TEG" array) coupled to a portion of the aircraft jet propulsion system, wherein the TEG array converts heat energy to electrical energy, and supplies power to the aircraft jet propulsion system, wherein the electrical energy is supplied to a power supply. The aircraft jet propulsion system may comprise an alternator that generates less energy than is required to power the aircraft jet propulsion system. The TEG array may supplement the energy generated by the alternator. The energy generated by the TEG array and the energy generated by the alternator may be sufficient to power the aircraft jet propulsion system and/or the electrical energy generated by the TEG array may be sufficient to power to aircraft jet propulsion system.
Abstract:
A scoop inlet for use in a gas turbine engine nacelle has a scoop inlet, and a tab extending forwardly of the scoop inlet. The scoop communicates with a downstream flowpath. The tab has at least one opening at a location upstream of the scoop inlet. A nacelle and a gas turbine engine are also disclosed.
Abstract:
An aircraft power distribution network comprising first 8 and second 9 galvanically isolated power bus bars, and first 7a and second 7b remote data concentrators (RDCs), each RDC having an input/output interface (I/O) 12 and a power supply 11, the first RDC power supply being connected to the first power bus bar, the second RDC power supply being connected to the second power bus bar, an input/output device being connected to the I/O of the first RDC and to the I/O of the second RDC, each RDC being adapted to supply electrical power to the input/output device 14 through its respective I/O, wherein each RDC includes a switch 15 for isolating the input/output device, and the switches being operatively coupled such that electrical power cannot be supplied to the input/output device by both RDCs simultaneously. Also, a method of operating the network.
Abstract:
An aircraft power distribution network comprising first and second galvanically isolated power bus bars, and first and second remote data concentrators (RDCs), each RDC having an input/output interface (I/O) and a power supply, the first RDC power supply being connected to the first power bus bar, the second RDC power supply being connected to the second power bus bar, an input/output device being connected to the I/O of the first RDC and to the I/O of the second RDC, each RDC being adapted to supply electrical power to the input/output device through its respective I/O, wherein each RDC includes a switch for isolating the input/output device, and the switches being operatively coupled such that electrical power cannot be supplied to the input/output device by both RDCs simultaneously. Also, a method of operating the network.
Abstract:
One aspect relates to a hybrid propulsive technique comprising providing at least some first thrust associated with a flow of a working fluid through at least a portion of an at least one axial flow jet engine. The hybrid propulsive technique comprises extracting energy from the working fluid that is at least partially converted into electrical power, and converting at least a portion of the electrical power to torque. The hybrid propulsive technique further comprises rotating an at least one independently rotatable propeller/fan of at least one rotatable propeller/fan assembly at least partially responsive to the converting the at least a portion of the electrical power to torque, wherein the rotating of the at least one independently rotatable propeller/fan of the at least one rotatable propeller/fan assembly is arranged to produce at least some second thrust.
Abstract:
A gas turbine engine includes a compressor section and a turbine section together defining a core air flowpath. Additionally, a rotary component is rotatable with at least a portion of the compressor section and at least a portion of the turbine section. An electric machine is mounted coaxially with the rotary component and positioned at least partially inward of the core air flowpath along a radial direction of the gas turbine engine. An electric communication bus is electrically connected to the electric machine and extends through the core air flowpath to, e.g., electrically connect the electric machine to one or more systems of the gas turbine engine or a propulsion system including the gas turbine engine.
Abstract translation:燃气涡轮发动机包括共同限定核心空气流动路径的压缩机部分和涡轮部分。 此外,旋转部件可与压缩机部分的至少一部分和涡轮部分的至少一部分一起旋转。 电机与旋转部件同轴地安装并且沿着燃气涡轮发动机的径向方向至少部分地定位在核心空气流动路径的内部。 电气通信总线电连接到电机并且延伸穿过核心空气流动路径以例如将电机电连接到燃气涡轮发动机或包括燃气涡轮发动机的推进系统的一个或多个系统。 p >
Abstract:
A gas turbine engine includes a fan case radially outwardly of a core compartment. A compressor section is located within an engine core compartment and includes a front mount flange and an aft mount flange. An oil tank is mounted to at least one of the fan case or the front and aft mount flanges. The oil tank has a cooling structure integrated into an outer surface such that the oil tank is subjected to cooling air flow from a plurality of air sources.
Abstract:
Embodiments of the present invention relate generally to oxygen/air supply systems and methods for use with fuel cell system applications on-board passenger transportation vehicles, such as aircraft or other aerospace vehicles, ground vehicles, or stationary applications for which oxygen and/or air has to be supplied to the fuel cell system.
Abstract:
A starting system for an aircraft propulsion engine is disclosed. An electrical motor (62 or 122) is mounted within a case (14) in which first and second hydraulic units (102, 104) are operated as part of a constant speed drive transmission. The electric motor accelerates a motor-generator set (24) to a velocity near the synchronous speed. The motor-generator set is coupled to the drive shaft (20) by operation of the hydraulic units as a variable torque link. The electric motor functions both as a heat source of hydraulic fluid contained within the hydraulic pump and motor case during extreme low temperature conditions at which point the starting torque of the motor is initially insufficient to cause rotation of the output shaft and to further accelerate the motor-generator set up to a rotational velocity at which the motor-generator set may be operated synchronously at which the motor-generator set is coupled to the drive shaft (120) by operation of the hydraulic units as a variable torque link to rotate the engine. When the temperature of the hydraulic fluid within the case is below the stall temperature so that the electric motor has insufficient starting torque to initiate rotation, the heat generated by the windings heats the hydraulic oil to lower its viscosity to a point at which rotation may be initiated to permit the motor-generator set to be rapidly accelerated to operate as a synchronous motor during starting.