Abstract:
Die Erfindung betrifft ein Herstellungsverfahren für ein mikromechanisches Bauteil, das wenigstens die folgenden Schritte umfasst: Herausstrukturieren einer Grundstruktur (10) mindestens einer Komponente des mikromechanischen Bauteils aus zumindest einer kristallinen Schicht (12) eines Substrats mittels eines kristallorientierungs-unabhängigen Ätzschritts, und Herausarbeiten mindestens einer Fläche (18) einer definierten Kristallebene (20) aus der Grundstruktur (10) der mindestens einen Komponente mittels eines kristallorientierungs-abhängigen Ätzschritts, wobei der kristallorientierungs- abhängige Ätzschritt ausgeführt wird, für welchen die jeweilige definierte Kristallebene (20), nach welcher die mindestens eine an der Grundstruktur (10) herausgearbeitete Fläche (18) ausgerichtet wird, von allen Kristallebenen die niedrigste Ätzrate aufweist. Des Weiteren betrifft die Erfindung ein mikromechanisches Bauteil.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
A method for forming a hollow microneedle structure includes processing the front side of a wafer (10) to form at least one microneedle (30) projecting from a substrate with a first part (18) of a through-bore, formed by a dry etching process, passing through the microneedle and through a part of a thickness of the substrate. The backside of the wafer (10) is also processed to form a second part (16) of the through-bore by a wet etching process.
Abstract:
One embodiment of the present invention provides a process for selective etching during semiconductor manufacturing. The process starts by receiving a silicon substrate with a first layer composed of a first material, which is covered by a second layer composed of a second material. The process then performs a first etching operation that etches some but not all of the second layer, so that a portion of the second layer remains covering the first layer. Next, the system performs a second etching operation to selectively etch through the remaining portion of the second layer using a selective etchant. The etch rate of the selective etchant through the second material is faster than an etch rate of the selective etchant through the first material, so that the second etching operation etches through the remaining portion of the second layer and stops at the first layer.
Abstract:
An example provides a method including sputtering a metal catalyst onto a substrate, exposing the substrate to a solution that reacts with the metal catalyst to form a plurality of pores in the substrate, and etching the substrate to remove the plurality of pores to form a recess in the substrate.
Abstract:
A method of ultra-high aspect ratio high resolution vertical directionality controlled metal- assisted chemical etching, V-MACE, is provided that includes forming a pattern on a substrate surface, using a lithographic or non-lithographic process, forming hole concentration balancing structures on the substrate, using a lithographic process or non- lithographic process, where the concentration balancing structures are proximal to the pattern, forming mechanical anchors internal or external to the patterned structures, forming pathways for etchant and byproducts to diffuse, and etching vertical features from the substrate surface into the substrate, using metal-assisted chemical etching, MACE, where the vertical features are confined to a vertical direction by the concentration balancing structures.
Abstract:
비정질 탄소막을 희생층으로 이용한 MEMS 디바이스 제조 방법이 제공된다. 본 발명의 일 실시예에 따르면, 하부 구조물을 형성한다. 상기 하부 구조물 상에 희생층으로서 비정질 탄소막을 형성한다. 상기 비정질 탄소막 상에 센서 구조를 포함하는 상부 구조물을 형성한다. 상기 하부 구조물과 상기 상부 구조물이 서로 이격되어 배치되도록 상기 비정질 탄소막을 제거한다.
Abstract:
A method of forming a microneedle device comprises the steps of coating the front and back surfaces of a substrate with a protective masking material, patterning the protective masking material to form a protective mask on the front surface of the substrate and an opening in the protective masking material on the back surface of the substrate, and simultaneously wet-etching both front and back surfaces of the substrate to provide a generally conical microneedle on the front surface of the substrate and a generally conical pit on the back surface of the substrate. The dimensions and location of the protective mask and opening are chosen so that the pyramidal pit extends from the back surface to intersect the front surface of the substrate, generally on, or adjacent to, a surface of the conical microneedle. Thus, a through-hole is formed in the substrate providing fluid communication from a rear of the substrate to a location on the front surface of the substrate, either on the microneedle surface or adjacent to a base of the microneedle.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
Methods for fabrication of high aspect ratio micropillars and nanopillars are described. Use of alumina as an etch mask for the fabrication methods is also described. The resulting micropillars and nanopillars are analyzed and a characterization of the etch mask is provided.