Abstract:
The present invention relates to a method for selective etching of a nanostructure (10). The method comprising: providing the nanostructure (10) having a main surface (12) delimited by, in relation to the main surface (12), inclined surfaces (14); and subjecting the nanostructure (10) for a dry etching, wherein the dry etching comprises: subjecting the nanostructure (10) for a low energy particle beam (20) having a direction perpendicular to the main surface (12); whereby a recess (16) in the nanostructure (10) is formed, the recess (16) having its opening at the main surface (12) of the nanostructure (10).
Abstract:
An example provides a method including sputtering a metal catalyst onto a substrate, exposing the substrate to a solution that reacts with the metal catalyst to form a plurality of pores in the substrate, and etching the substrate to remove the plurality of pores to form a recess in the substrate.
Abstract:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
Abstract:
A method of forming at least one Micro-Electro-Mechanical System(MEMS) cavity includes forming a first sacrificial cavity layer over a lower wiring layer. The method further includes forming a layer. The method further includes forming a second sacrificial cavity layer over the first sacrificial layer and in contact with the layer. The method further includes forming a lid on the second sacrificial cavity layer. The method further includes forming at least one vent hole in the lid, exposing a portion of the second sacrificial cavity layer. The method further includes venting or stripping the second sacrificial cavity layer such that a top surface of the second sacrificial cavity layer is no longer touching a bottom surface of the lid, before venting or stripping the first sacrificial cavity layer thereby forming a first cavity and second cavity, respectively.
Abstract:
A single crystal silicon etching method includes providing a single crystal silicon substrate having at least one trench therein. The substrate is exposed to a buffered fluoride etch solution which undercuts the silicon to provide lateral shelves when patterned in the direction. The resulting structure includes an undercut feature when patterned in the direction.
Abstract:
The invention relates to a method for producing a sensor component comprising an electrically conductive longish element, which is held inside a channel in a manner that permits electricity to flow therearound. The inventive method provides that, after depositing an insulation layer onto a supporting layer and after subsequently depositing a coating comprised of at least one electrically conductive layer onto said insulation layer, the coating is etched away until reaching the remaining areas required for forming the longish element and the supply leads thereof while exposing the insulation layer in areas. The invention provides that, after etching, an additional insulation layer (7) is deposited onto the coating (3) and onto the exposed insulation layer (2). A channel (8) is subsequently etched into the insulation layer (2) and into the additional insulation layer (7) while at least partially exposing the longish element (9). The channel is etched in such a manner that the longish element (9) is solely held inside the lateral walls of the channel (8), which are formed by the insulation layers (2) and (7), and passes through the channel in a self-supporting manner.
Abstract:
L'invention porte sur un procédé d'auto-assemblage capillaire d'une plaque et d'un support (S), comprenant : - la formation d'un masque de gravure sur une région d'un substrat; - la gravure ionique réactive du substrat au moyen d'une série de cycles comprenant chacun une étape de gravure isotrope suivie d'une étape de passivation de surface, la durée de l'étape de gravure isotrope de chaque cycle augmentant d'un cycle à l'autre, le ratio entre les durées des étapes de passivation et de gravure de chaque cycle étant inférieur à un ratio permettant de réaliser une gravure anisotrope verticale, de manière à former un support (S) présentant une surface supérieure (1) constituée par ladite région et des parois latérales (2) formant avec la surface supérieure un angle aigu (β); - le retrait du masque de gravure; - le placement d'une goutte (G) sur la surface supérieure du support; - la pose de la plaque sur la goutte (G).
Abstract:
The micro-electromechanical semiconductor component is provided with a first silicon semiconductor substrate (16) having an upper face, into which a cavity (18) delimited by lateral walls and a floor wall is introduced, and having a second silicon semiconductor substrate (13) comprising a silicon oxide layer (14) and a polysilicon layer (15) applied thereon having a defined thickness. The polysilicon layer (15) of the second silicon semiconductor substrate (13) faces the upper face of the first silicon semiconductor substrate (16), the two silicon semiconductor substrates are bonded, and the second silicon semiconductor substrate (13) covers the cavity (18) in the first silicon semiconductor substrate (16). Grooves (19) that extend up to the polysilicon layer (15) are arranged in the second silicon semiconductor substrate (13) in the region of the section thereof that covers the cavity (18).
Abstract:
Das mikroelektromechanische HalbSeiterbaueiement ist mit einem ersten Halbleitersubstrat (1), das eine Oberseite aufweist, und einem zweiten Halbleitersubstrat (5), das eine Oberseite aufweist, versehen. Beide Halbleitersubstrate (1, 5) sind auf ihren Oberseiten aufliegend gebondet. In die Oberseite mindestens eines der beiden Halbleitersubstrate (1, 5) ist eine Kavität (4) eingebracht. Die Kavität (4) ist durch Seitenwände (3) und gegenüberliegende Deck- sowie Bodenwände, die durch die beiden Haibleitersubstrate (1, 5) gebildet sind, definiert. Die Deckwand oder die Bodenwaπd wirkt als reversibel verformbare Membran und in der anderen dieser beiden Wände der Kavität (4) ist eine sich durch das betreffende Halbleitersubstrat (1, 5) erstreckende Öffnung (98) angeordnet.
Abstract:
Das mikroelektromechanisches Halbleiterbauelement ist mit einem ersten SiIizium-Halbleitersubstrat (16) mit einer Oberseite, in die eine durch Seitenwände und eine Bodenwand begrenzte Kavität (18) eingebracht ist, und mit einem zweiten Silizium-Halbleitersubstrat (13) mit einer Siliziumoxidschicht (14) und einer auf diese aufgebrachten Polysiliziumschicht (15) definierter Dicke versehen. Das zweite Silizium-Halbleitersubstrat (13) ist mit seiner Polysiliziumschicht (15) der Oberseite des ersten Silizium-Halbleitersubstrats (16) zugewandt mit diesem gebondet und das zweite Silizium-Halbleitersubstrat (13) überdeckt die Kavität (18) in dem ersten Silizium-Halbleitersubstrat (16), In das zweite Silizium-Halbleitersubstrat (13) sind im Bereich von dessen die Kavität (18) überdeckenden Abschnitt Gräben (19) angeordnet, die sich bis zur Poiysiliziumschicht (15) erstrecken.