Abstract:
A method of stabilizing sulforaphane is provided. The method includes contacting sulforaphane, or an analog thereof, and a cyclodextrin to form a complex between the sulforaphane, or analog thereof, and the cyclodextrin.
Abstract:
The present invention provides glucosinolate and isothiocyante compounds and related methods for synthesizing these compounds and analogs. In certain embodiments, these glucosinolate and isothiocyanate compounds are useful and chemopreventive and or chemotherapeutic agents.
Abstract:
Compounds of formula (I): wherein R is C1-C6alkyl, C1-C6haloalkyl, C3-C6alkenyl, C3-C6alkynyl, C1-C4alkoxy or C3-C6cycloalkyl; R1 is halogen; R2 and R3 are each independently of the other C1-C4alkyl; R4 is halogen or a group of the formula -X-R5, -X-A-R6 or (a); R5 is hydrogen, C1-C6alkyl, C1-C8haloalkyl, C1-C4alkoxy-C1-C4alkyl, C1-C10alkylthio-C1-C4alkyl, C1-C4alkylamino-C1-C4alkyl, di-C1-C4alkylamino-C1-C4alkyl, cyano-C1-C8-alkyl, C3-C8alkenyl, C3-C8haloalkenyl, C3-C8alkynyl, C3-C6cycloalkyl, oxetanyl, C3-C7-halocycloalkyl, C3-C7cycloalkyl-C1-C4alkyl, phenyl-C1-C3alkyl that is unsubstituted or substituted in the phenyl ring by 1, 2 or 3 identical or different substituents selected from halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy and C1-C4haloalkoxy, or R5 is an alkali metal, alkaline earth metal or ammonium ion, or is the group -N=C(CH3)2, -CH2-O-N=C(CH3)2 or -CH2CH2-O-N=C(CH3)2; X is oxygen or sulfur; A is C1-C4 alkylene; R6 is a 5- or 6-membered heterocyclic ring that contains from 1 to 3 hetero atoms selected from the group oxygen, nitrogen and sulfur and that is bonded via the carbon or nitrogen atom to the alkylene chain A, it being possible for the heterocyclic ring in turn also to be benzene-fused and mono- or di-substituted by halogen, C1-C4alkyl, C1-C3haloalkyl, C1-C3alkoxy, C1-C3haloalkoxy, di-C1-C3alkylamino, hydroxy or by an oxy function; R7 is hydrogen, C1-C6alkyl, C1-C4haloalkyl, C1-C4alkoxy, C1-C4alkoxy-C1-C4alkyl, C3-C6alkenyl, C3-C6alkynyl, C3-C8cycloalkyl, hydroxy-C1-C4alkyl or cyano-C1-C4alkyl; R8 is hydrogen, C1-C6alkyl, C1-C4haloalkyl, C1-C4alkoxy-C1-C4-alkyl, hydroxy-C1-C4-alkyl, C3-C6alkenyl, phenyl or phenyl-C1-C3alkyl, the phenyl ring being unsubstituted or mono-, di- or tri-substituted by halogen, C1-C4alkyl, C1-C4haloalkyl, C1-C4alkoxy or by C1-C4haloalkoxy; or R7 and R8, together with the nitrogen atom to which they are bonded, form a pyrrolidino, piperidino, morpholino, thiomorpholino or piperazino ring that is unsubstituted or mono- or di-substituted by C1-C3alkyl; Z is oxygen or sulfur; n is 3, 4 or 5; and n1 is 0, 1, 2 or 3, and salts of those compounds, are suitable as herbicides for controlling weeds in crops of useful plants.
Abstract:
The present invention relates to spirocyclic acylguanidines and their use as inhibitors of the &bgr;- secretase enzyme (BACE1) activity, pharmaceutical compositions containing the same, and methods of using the same as therapeutic agents in the treatment of neurodegenerative disorders, disorders characterized by cognitive decline, cognitive impairment, dementia and diseases characterized by production of &bgr;-amyloid aggregates.
Abstract:
A compound of formula (I) where the substituents have the meanings assigned to them in claim 1 , compositions comprising a compound of formula (I) and the use of such compounds and/or compositions controlling insects, acarines, nematodes or molluscs.
Abstract:
The present invention provides glucosinolate and isothiocyante compounds and related methods for synthesizing these compounds and analogs. In certain embodiments, these glucosinolate and isothiocyanate compounds are useful and chemopreventive and or chemotherapeutic agents.
Abstract:
A compound is represented as Formula I, a tautomer thereof, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof. Compounds of Formula I are inhibitors of N-acylethanolamine hydrolyzing acid amidase (NAAA). The present technology is directed to compounds, compositions, and methods to inhibit N-acylethanolamine hydrolyzing acid amidase and to treat N-acylethanolamine hydrolyzing acid amidase mediated conditions in a subject.
Abstract:
The present invention relates to spirocyclic acylguanidines and their use as inhibitors of the β- secretase enzyme (BACE1) activity, pharmaceutical compositions containing the same, and methods of using the same as therapeutic agents in the treatment of neurodegenerative disorders, disorders characterized by cognitive decline, cognitive impairment, dementia and diseases characterized by production of β-amyloid aggregates.
Abstract:
Sulforaphane has been isolated and identified as a major and very potent phase II enzyme inducer in broccoli (Brassica oleracea italica). Sulforaphane is a monofunctional inducer, inducing phase II enzymes selectively without the induction of aryl hydrocarbon receptor-dependent cytochromes P-450 (phase I enzymes). Analogues differing in the oxidation state of sulfur and the number of methylene groups were synthesized, and their inducer potencies were measured. Sulforaphane is the most potent of these analogues. Other analogues having different substituent groups in place of the methylsulfinyl group of sulforaphane were also synthesized and assessed. Of these, the most potent are 6-isothiocyanato-2-hexanone and exo-2-acethyl-6-isothiocyanatonorbornane.