Abstract:
Oil tanker and or ore/oil carrier can take more good fuel oil consumption through cargo oil handling by usage of electric motor driven system instead of steam turbine driven cargo pump system. Its merit is about 20%.
Abstract:
An exhaust gas energy recovery system includes a combustion engine, a volumetric fluid expander, and a water injection mechanism. The combustion engine includes at least one cylinder and an exhaust gas outlet for conveying an exhaust gas stream at a first pressure. The volumetric fluid expander generates useful work at an output shaft by expanding the exhaust gas stream to a second pressure lower than the first pressure as the exhaust gas stream moves through the volumetric fluid expander. The water injection mechanism injects water into the cylinder at or before an exhaust cycle of the cylinder.
Abstract:
Die Erfindung betrifft ein Verfahren zum Betrieb einer Dampfkraftanlage (1) mit einem Wasser-Dampf-Kreislauf (2), bei dem die anfallenden Prozessabwässer (10) aus dem Wasser-Dampf-Kreislauf (2) entsprechend ihrem jeweiligen Grad an Verunreinigung in einer Anzahl an Teilabwassermengen getrennt gesammelt werden. Dabei wird mindestens eine erste Teilabwassermenge (11) mit einem ersten Verunreinigungsgrad, und mindestens eine zweite Teilabwassermenge (12) mit einem zweiten Verunreinigungsgrad gebildet. Der zweite Verunreinigungsgrad höher ist als der erste Verunreinigungsgrad. Die erste Teilabwassermenge (11) und die zweite Teilabwassermenge (12) werden erfindungsgemäß derart miteinander vermischt, dass ein zusammengeführtes Prozessabwasser (21) entsteht, welches einer Abwasseraufbereitungsanlage (19) zugeführt wird.
Abstract:
A method for reducing NOx and recovering waste heat from a stream of exhaust gas from a fossil fuel fired turbine includes contacting the stream of exhaust gas between an economizer and an evaporator with ozone gas to convert the NO to nitrogen dioxide (NO 2 ) thereby forming a stream of exhaust gas comprising NO 2 and residual NO. The method further includes, contacting the stream of exhaust gas comprising NO 2 and residual NO with water mist to create an exhaust stream comprising nitric acid (HNO 3 ) and residual NO. The method further includes cooling the stream of exhaust gas comprising HNO 3 and residual NO, collecting a first residual water film on a first condensing medium to capture the HNO 3 and removing the first water film and HNO 3 .
Abstract:
This present invention relates to methods and systems of converting electrical energy to chemical energy and optionally reconverting it to produce electricity as required. In preferred embodiments the source of electrical energy is at least partially from renewable source. The present invention allows for convenient energy conversion and generation without the atmospheric release of CO2.
Abstract:
Systems and methods are disclosed herein that generally involve a double pinch criterion for optimization of regenerative Rankine cycles. In some embodiments, operating variables such as bleed extraction pressure and bleed flow rate are selected such that a double pinch is obtained in a feedwater heater, thereby improving the efficiency of the Rankine cycle. In particular, a first pinch point is obtained at the onset of condensation of the bleed and a second pinch point is obtained at the exit of the bleed from the feedwater heater. The minimal approach temperature at the first pinch point can be approximately equal to the minimal approach temperature at the second pinch point. Systems that employ regenerative Rankine cycles, methods of operating such systems, and methods of optimizing the operation of such systems are disclosed herein in connection with the double pinch criterion.
Abstract:
The invention is directed by an ORC (Organic Rankine Cycle) system at least partially co-generative for a production of electric energy and the heating of a user fluid. The system comprises at least two regenerative exchangers (20-24) positioned in series on the route of the work fluid between the exit of an electric expander-generator group (16) and the entrance of a condenser (18) of the ORC system, and at least a heat exchanger-user (26) connected by means of an offtake line (25) to at least one of said regenerative exchangers (20 - 24) to receive from them at least a part of the capacity of work fluid and crossed by the user fluid to be heated by means of a thermal exchange with said capacity of work fluid. The part of the capacity of the work fluid on exiting from the user exchanger is returned to the same regenerative exchanger.
Abstract:
L'invention concerne un dispositif (10) d'exploitation de l'énergie cinétique d'un flux gazeux (F1), ledit dispositif (10) comprenant un moyen de conversion d'énergie (21), un premier réseau (R1) configuré pour alimenter ledit moyen de conversion (21) avec ledit flux gazeux (F1), et un second réseau (R2) configuré pour récupérer le flux gazeux (F2) en aval dudit moyen de conversion (21), caractérisé par le fait que ledit premier réseau (R1) est configuré pour être alimenté par un flux incident (F4) et par un flux recirculé (F3) provenant dudit second réseau (R2), ledit flux incident (F4) présentant une pression supérieure à celle dudit flux recirculé (F3).