Abstract:
An automated-vehicle or automated-taxi pickup-location evaluation system (10) includes a communications-network (20), an object-detector (28) and/or a digitized- map (48), and a controller (32). The communications-network (20) is used to send a transportation-request (22) from a client (14) to an automated-taxi (12), and communicate a preferred-location (26) where the automated-taxi (12) will meet the client (14). The object-detector (28) is used to detect an object (30) proximate to the preferred-location (26). The digitized-map (48) is used to determine a route (60) to the preferred-location (26) for the automated-taxi (12) to follow. The controller (32) is in communication with the object-detector (28) and/or the digitized-map (48), and the communications-network (20). The controller (32) determines when the object (30) makes the preferred-location (26) unsuitable to pickup the client (14), and/or that the digitized-map (48) indicates that the preferred-location (26) is unsuitable to use to pickup the client (14). The controller (32) then determines an alternate-location (42) to pickup the client (14), and then communicates the alternate-location (42) to one of the client (14), the automated-taxi (12), and both the client (14) and the automated-taxi (12).
Abstract:
A mobile transceiver for asset tracking having route monitoring and method of operation are provided. In one aspect, the method comprises: determining a location of the mobile transceiver using the satellite receiver; determining whether the determined location deviates from a planned route; and sending an alert to an asset tracking service when the determined location deviates from the planned route.
Abstract:
Methodologies, systems, and computer-readable media are provided for generating routes for relocating delivery of objects. Public data relating to a user's current location, a current location of an object to be delivered, and the user's future travel plans is retrieved. Personal data is also retrieved, including customizable relocation preferences and future travel plans associated with the user. A relocation destination is computed for relocating delivery of the object to the user from a current delivery destination to the relocation destination based on the public data and the personal data associated with the user. A relocation time and a relocation route are also computed, based in part on the public data and the personal data associated with the user. A notification of the relocation destination and the relocation time is then transmitted to an electronic device associated with the user.
Abstract:
A system of one or more computers configured to perform operations or actions by virtue of having software, firmware, hardware, or a combination installed on the system which causes the system to perform actions. One or more computer programs can be configured to perform operations or actions by virtue of including instructions that cause the apparatus to perform the actions. One general aspect includes a system, including a computer programmed to receive a pickup request with a current location of a rider. The system determine a route to the rider, based on a geolocation of a vehicle and the location of the rider. The system receives updated locations from the rider, and updates the route to the rider for the driver. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
Abstract:
Methods and systems for improved positioning accuracy relative to a digital map are disclosed, and which are preferably used for highly and fully automated driving applications, and which may use localisation reference data associated with a digital map. The invention further extends to methods and systems for the generation of localisation reference data associated with a digital map.
Abstract:
One or more techniques and/or systems are provided for routing a user between events using an itinerary. An event source (e.g., electronic calendar) may be assessed to identify event information (e.g., event locations) for events (e.g., meetings). The event information may be evaluated to determine a schedule of events. Routes between events within the schedule may be identified to determine route information (e.g., predicted travel times) for the routes. The event information and the route information may be evaluated to generate an itinerary of events. In an example, a constraint may be identified (e.g., a traffic accident along a route). The constraint may be evaluated to determine an impact (e.g., a user arriving to the meeting event late) of the constraint on the itinerary. Responsive to the impact exceeding an adjustment threshold, the itinerary may be adjusted (e.g., modifying a route between one or more events to avoid the accident).
Abstract:
A method of in-vehicle tracking that may begin with establishing a communication link between a mobile device and a navigation system of a vehicle. The navigation system may present driving instructions leading to a destination. Each of a plurality of locations may be serially passed over the communication link from the mobile device to the navigation system. Additionally, each of the plurality of locations may be serially set, as it is communicated, as the destination within the navigation system. As the destination within the navigation system is updated, the driving instructions leading to that destination may be updated as well.
Abstract:
Methods and systems for improved positioning accuracy relative to a digital map are disclosed, and which are preferably used for highly and fully automated driving applications, and which may use localisation reference data associated with a digital map. The invention further extends to methods and systems for the generation of localisation reference data associated with a digital map.
Abstract:
Es werden erste Fahrstreckenprofildaten für einen vorgegebenen Fahrstreckenabschnitt ermittelt abhängig von Daten, die mittels einer vorgegebenen Sensorvorrichtung eines Fahrzeugs (20) oder eines weiteren Fahrzeugs (20) erfasst werden, wobei die ersten Fahrstreckenprofildaten repräsentativ sind für zumindest eine erste lokale physikalische Fahrbahneigenschaft des vorgegebenen Fahrstreckenabschnitts. Ferner werden bereitgestellte zweite Fahrstreckenprofildaten eingelesen, die sich zumindest teilweise auf den vorgegebenen Fahrstreckenabschnitt beziehen, wobei die zweiten Fahrstreckenprofildaten repräsentativ sind für zumindest eine zweite lokale physikalische Fahrbahneigenschaft. Ein Ähnlichkeitsmaß zwischen den ersten Fahrstreckenprofildaten und den zweiten Fahrstreckenprofildaten wird ermittelt und abhängig von dem Ähnlichkeitsmaß wird eine Zuordnung der zweiten Fahrstreckenprofildaten auf eine Umgebung des Fahrzeugs (20) und/ oder auf eine zeitabhängige Zuordnungsfunktion der Einwirkungen der Fahrstrecke auf das Fahrzeug (20) ermittelt.