Abstract:
A content addressable memory using encoded data words and search words, and techniques for operating such device. In one embodiment, the data word is transformed into a code word guaranteeing a mismatch of at least two code word bits of different binary values during the memory search operation when the data word does not match a search word. In another embodiment, the search word is transformed into a search code such that the Hamming distance between the code word and the search code is greater than a given threshold when there is a mismatch of at least one bit between the data word and the search word.
Abstract:
A non-volatile, bistable magnetic tunnel junction cache memory (15) includes a cache tag array (16) and a cache data array (18). The cache tag array includes non-volatile magnetic memory tag cells (17) arranged in rows and columns. Each row of the tag array includes a word line and a digit line associated with each tag cell in the row. The cache data array includes non-volatile magnetic memory data cells (19) arranged in rows and columns. The rows of the data array correspond with the rows of the tag array and each row of the data array is magnetically associated with the word line and the digit line associated with each corresponding row of the tag array.
Abstract:
Data bit inversion tracking in cache memory to reduce data bits written for write operations is disclosed. In one aspect, a cache memory including a cache controller and a cache array is provided. The cache array includes one or more cache entries, each of which includes a cache data field and a bit change track field. The cache controller compares a current cache data word to a new data word to be written and stores a bit track change word representing the difference (i.e., inverted bits) between the current cache data word and the new data word in the bit change track field. By using the bit track change word stored in the bit change track field to determine whether fewer bit writes are required to write data in an inverted or a non-inverted form, power consumption can be reduced for write operations through reduced bit write operations.
Abstract:
A content-addressable random access memory having magnetic tunnel junction-based memory cells and methods for making and using same. The magnetic tunnel junction has first and second magnetic layers and can act as a data store and a data sense. Within each cell, registered data is written by setting a magnetic orientation of the first magnetic layer in the magnetic tunnel junction via current pulses in one or more current lines. Input data for comparison with the registered data can be similarly set through the magnetic orientation of the second magnetic layer via the current lines. The data sense is performed by measuring cell resistance, which depends upon the relative magnetic orientation of the magnetic layers. Since data storage, data input, and data sense are integrated into one cell, the memory combines higher densities with non- volatility. The memory can support high speed, reduced power consumption, and data masking.
Abstract:
Medio de almacenamiento magnético de alta densidad que está provisto de partículas ferromagnéticas de baja simetría, en donde estas partículas están formadas por segmentos o barras, o sistemas de barras y combinaciones de estas que forman estructuras de diferentes geometrías.
Abstract:
A content-addressable random access memory having magnetic tunnel junction-based memory cells and methods for making and using same. The magnetic tunnel junction has first and second magnetic layers and can act as a data store and a data sense. Within each cell, registered data is written by setting a magnetic orientation of the first magnetic layer in the magnetic tunnel junction via current pulses in one or more current lines. Input data for comparison with the registered data can be similarly set through the magnetic orientation of the second magnetic layer via the current lines. The data sense is performed by measuring cell resistance, which depends upon the relative magnetic orientation of the magnetic layers. Since data storage, data input, and data sense are integrated into one cell, the memory combines higher densities with non- volatility. The memory can support high speed, reduced power consumption, and data masking.