Abstract:
Bei einem Leistungsversorgungssystem (1) für einen Plasmaprozess mit einer ersten Leistungsversorgung (2), und einer zweiten baugleichen oder bauähnlichen redundanten Leistungsversorgung (3), wobei die erste und zweite Leistungsversorgung (2, 3) über eine Datenaustauschverbindung (4) datentechnisch verbunden sind, ist die erste Leistungsversorgung (2) ausgelegt, in einem Standbymodus Daten von der zweiten im Normalbetriebsmodus arbeitenden Leistungsversorgung (3) zu erhalten, die notwendig sind, um die bislang von der zweiten Leistungsversorgung (3) an den Plasmaprozess gelieferte Leistung an Stelle der zweiten Leistungsversorgung (3) dem Plasmaprozess zuzuführen.
Abstract:
The disclosure relates to microwave cavity plasma reactor (MCPR) apparatus and associated tuning and process control methods that enable the microwave plasma assisted chemical vapor deposition (MPACVD) of a component such as diamond. Related methods enable the control of the microwave discharge position, size and shape, and enable efficient matching of the incident microwave power into the reactor prior to and during component deposition. Pre-deposition tuning processes provide a well matched reactor exhibiting a high plasma reactor coupling efficiency over a wide range of operating conditions, thus allowing operational input parameters to be modified during deposition while simultaneously maintaining the reactor in a well-matched state. Additional processes are directed to realtime process control during deposition, in particular based on identified independent process variables which can effectively control desired dependent process variables during deposition while still maintaining a well-matched power coupling reactor state.
Abstract:
【課題】1回の枚葉プラズマ処理の中でプラズマプロセスのゆらぎやばらつきを精緻に抑制する。 【解決手段】OES計測部110は、各ステップの終了時または終了直後に分光計測値MOES i を出力する。CD推定部140は、推定モデル記憶部142より取り込むCD推定モデルAM i と分光計測値MOES i とを用いて各ステップ分のCD推定値ACD i を求める。プロセス制御部132は、次のステップにおいて、レシピ記憶部136より取り込んだ次のステップ分のプロセス条件設定値PC i+1 および制御モデル記憶部138より取り込んだ次のステップ分のプロセス制御モデルCM i+1 に加えて、CD推定部140より受け取った前ステップ分のCD推定値ACD i を制御対象130の自動制御に用いる。
Abstract:
A method for automatically characterizing plasma during substrate processing is provided. The method includes collecting a set of process data, which includes at least data about current and voltage. The method also includes identifying a relevancy range for the set of process data, wherein the relevancy range includes a subset of the set of process data. The method further includes determining a set of seed values. The method yet also includes employing the relevancy range and the set of seed values to perform curve-fitting, wherein the curve-fitting enables the plasma to be automatically characterized.
Abstract:
A plasma impedance matching unit (13) for a plasma power supply system (10, 100) comprises a. a first power connector (40) for coupling the matching unit (13) to a power source (11), b. a second power connector (41) for coupling the matching unit (13) to a plasma load (20), c. a data link interface (45) for directly coupling the impedance matching unit (13) to another plasma impedance matching unit (14) of the plasma power supply system (10, 100) via a data link (48), d. a controller (42) configured to control the matching unit (13) in order to match the impedance from the first power connector (40) to the impedance at the second power connector (41), wherein e. the controller (42) is configured to operate as a master for at least one other impedance matching unit (14) and/or at least one RF power source (11, 12) of the plasma power supply system (10, 100), wherein the controller (42) communicates via the data link interface (45) with the other impedance matching unit(s) (14) and/or RF power source(s) (11, 12) of the plasma power supply system (10, 100).
Abstract:
A Method of monitoring the discharge in a plasma process comprises the steps: a. supplying a plasma process with a periodic power supply signal (71a); b. determining a first power supply signal waveform within a first time interval (Δt) within a first period of the power supply signal; c. determining a second power supply signal waveform (31, 51) within a second time interval (Δt) within a second period of the power supply signal, wherein the second time interval (Δt) is at a position in the second period which corresponds to the position of the first time interval (Δt) within the first period; d. comparing the second power supply signal waveform (31, 51) of the second time interval with the first power supply signal waveform of the first time interval or a reference signal waveform (50, 60), and determining a first comparison result; e. if the first comparison result corresponds to a given first comparison result, time shifting one of the second power supply signal waveform (31, 51) in the second time interval (Δt), the first power supply waveform in the first time interval (Δt) or the reference signal waveform (50, 60), and comparing the time shifted signal with one of the signal waveforms that were not time shifted, thereby obtaining a second comparison result.
Abstract:
A system for monitoring a condition in an enclosed plasma processing space (102). The system comprises a sensor (338), arranged to be provided within the enclosed plasma processing space, for sensing a condition in the enclosed plasma processing space and a modulation circuit (342), connected to the sensor, and arranged to modulate an output of the sensor to provide a modulated signal. The system further comprises a first transmission line coupler (330) arranged to be disposed within the enclosed plasma processing space. The first transmission line coupler (546) is connected to the modulation circuit and is arranged to couple the modulated signal to a transmission line, which is arranged to deliver energy into the enclosed plasma space. The system further comprises a second transmission line coupler, arranged to be disposed outside the enclosed plasma processing space and coupled to the transmission line and a demodulator (550), connected to the second coupler, for receiving and demodulating the modulated signal.