Abstract:
Devices, structures, materials and methods for vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Porous conductive transparent electrodes (such as from nanowires (NW)) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, porous conductive electrodes and relevant substrates and gates are utilized to construct LETs, including singly and doubly gated VPLETs. In addition, printing processes are utilized to deposit layers of one or more of porous conductive electrodes, LEDs, and dielectric materials on various substrates to construct LETs, including singly and doubly gated VPLETs.
Abstract:
Vorrichtungen zur Aussendung und oder zum Empfang elektromagnetischer Strahlung und Verfahren zur Bereitstellung derselben Die Erfindung beschreibt eine Vorrichtung zur Aussendung oder Detektion elektromagnetischer Strahlung (11 o ; 11 i). Die Vorrichtung weist eine erste und eine zweite Elektrode (14a, 14b) auf, die über eine elektrisch leitfähige Nanostruktur (12), z. B. einen Nanodraht oder ein Nanoröhrchen (CNT), miteinander verbunden sind. Die elektrisch leitfähige Nanostruktur ist ausgebildet, um Elektronen (16) und Löcher (18) aus der ersten und zweiten Elektrode zu empfangen oder zu der ersten und der zweiten Elektrode zu transportieren. Die Vorrichtung umfasst ferner ein an einer Umfangsfläche der elektrisch leitfähigen Nanostruktur (12) angeordnete(s/r) Strahlungsmolekül / Quantenpunkt (22). Das Strahlungsmolekül / Der Quantenpunkt (22) ist ausgebildet, um Elektronen und Löcher oder elektromagnetische Strahlung (11 i) aufzunehmen und bei einer Rekombination von aufgenommenen Elektronen und aufgenommenen Löchern die elektromagnetische Strahlung (11 o ) zu emittieren oder basierend auf der aufgenommenen elektromagnetischen Strahlung (11 i) Elektronen und Löcher zu emittieren. Die elektrisch leitfähige Nanostruktur (12) ist an einem an der ersten oder zweiten Elektrode (14a, 14b) angeordneten Ende im Bereich (26a, 26b) einer Umfangsfläche der elektrisch leitfähigen Nanostruktur zumindest teilweise von der ersten oder zweiten Elektrode umschlossen, um einen elektrischen Kontakt der ersten oder zweiten Elektrode und der elektrisch leitfähigen Nanostruktur bereitzustellen.
Abstract:
This invention relates to CMOS based micro-photonic systems comprising an optical source, means for optical transmission, and a detector, wherein the optical source is capable of emitting light having a wavelength being in a range in which a nitride comprising layer of said means for optical transmission is transparent and being below a detection threshold of said detector so as to enable the generation of a micro-photonic system in silicon integrated circuit technology.
Abstract:
An optical communication system is provided comprising of a three terminal silicon based light emitting device operating by means of avalanche carrier multiplication and emitting at the below threshold wavelength detection range for Silicon of 850nm; a low loss optical waveguide operating in the below threshold wavelength detection range for Silicon of 850nm; and an optical detector, wherein a complete and all-silicon optical communication system is formed being capable of transferring electrical signals in terms of optical intensity variations, such intensities then being propagated through the waveguide and being detected by the optical detector; and being converted back to electrical signals. In a particular mode of operation of the system, wavelength modulation may be obtained. In other applications, transponding action and optical amplification may be obtained.
Abstract:
The present invention relates to a light emitting device comprising a plurality of electrically coupled light emitting elements, wherein each light emitting element has a luminous efficacy vs. current characteristic, wherein said luminous efficacy vs. current characteristic has a maximum luminous efficacy value and wherein at least one of said light emitting devices is operated at a current corresponding to a luminous efficacy value that is within 10% of said maximum luminous efficacy value. The present invention also relates to methods of making said light emitting device, to lamps comprising said light emitting device and to methods of operating said light emitting device.
Abstract:
A light emitting apparatus may include a gate metal positioned between a p-type contact and an n-type contact, a gate oxide or other dielectric stack positioned below and attached to the gate metal, a Ge or Si 1-z Gez channel positioned below and attached to the gate dielectric stack, a buffer, and a silicon substrate positioned below and attached to the buffer. The light emitting apparatus may alternatively include a gate metal positioned between a p-type contact and an n-type contact, a wide bandgap semiconductor positioned below and attached to the gate metal, a Ge or Si 1-z Gez channel positioned below and attached to the wide bandgap semiconductor, a buffer, and a silicon substrate positioned below and attached to the buffer. Embodiments of the light emitting apparatus may be configured for use in current-injected on-chip lasers, light emitting diodes or other light emitting devices.
Abstract:
A semiconductor light emitting device (10) comprises a semiconductor structure (12) comprising a first body (14) of a first semiconductor material (in this case Ge) comprising a first region of a first doping kind (in this case n) and a second body (18) of a second semiconductor material (in this case Si) comprising a first region of a second doping kind (in this case p). The structure comprises a junction region (15) comprising a first heterojunction (16) formed between the first body (14) and the second body (18) and a pn junction (17) formed between regions of the structure of the first and second doping kinds respectively. A biasing arrangement (20) is connected to the structure for, in use, reverse biasing the pn junction, thereby to cause emission of light.
Abstract:
An optoelectronic device (20) comprises a body ( 14) of an indirect bandgap semiconductor material having a surface (16) and a photon active region (12) on one side of the surface. A fight directing arrangement (22) is formed integrally with the body on an opposite side of the surface.