Abstract:
Processes and catalysts for the hydrogenation of carbon dioxide (CO2) to produce a synthesis gas containing composition are disclosed. The process can include contacting a CuZnZr mixed metal oxide catalyst with hydrogen (H2) and CO2 at a temperature of at least 550 °C and a pressure greater than atmospheric pressure to produce the syngas containing composition suitable for use in oxo-products synthesis.
Abstract:
Verfahren zur Bereitstellung von Polyvinylchlorid (PVC), das folgende Schritte umfasst: a) Bereitstellen von Elektrizität und einer Alkalimetallchloridlösung, vorzugsweise Li, K und/oder Na, in einer Chloralkali-Elektrolysezelle (17) und Erhalten von Cl 2 und einem Alkalimetallhydroxid, vorzugsweise NaOH, LiOH und/oder KOH, und H 2 durch Elektrolyse; b) Bereitstellen von Elektrizität und Wasser in einer weiteren Elektrolysezelle (12) und Erhalten von H 2 und O 2 ; c) Erhalten von CO 2 aus Synthesegas, dessen CO unter Verwendung des O 2 aus Schritt b) oxidiert wurde, oder durch direkten CO 2 -Eintrag aus nachhaltigen Quellen oder Emissionsquellen und anschließendes Verwenden von in Schritt a) und/oder Schritt b) erhaltenem H 2 und dem CO 2 in einem katalytischen Methanolumwandlungsverfahren und Erhalten von Methanol; d) Verwenden von in Schritt c) erhaltenem Methanol bei einer katalytischen Methanol-Dehydratisierung, die zu Ethylen und Wasser führt; e) Verwenden von in Schritt d) erhaltenem Ethylen und in Schritt a) erhaltenem Cl 2 bei der Direktchlorierung von Ethylendichlorid (EDC); f) Einspeisen des Ethylendichlorids (EDC) in einen Crackreaktor zur Herstellung von Vinylchlorid-Monomer (VCM) und HCl; und h) Polymerisieren von Vinylchlorid-Monomer (VCM) und Erhalten von Polyvinylchlorid (PVC). Ziel ist die Bereitstellung eines Verfahrens zur Herstellung von nachhaltigem PVC, das auf erneuerbaren kostengünstigen Edukten beruht, alle Verfahrensschritte abdeckt und gleichzeitig die Emission von Wasser- und Luftschadstoffen minimiert und den benötigten Energie- und Wassereintrag verringert.
Abstract:
A process for converting oxygenates to olefins comprising: a) feeding an oxygenate containing feed to an oxygenate to olefins conversion reactor; b) contacting the oxygenate containing feed with a molecular sieve catalyst under oxygenate to olefins conversion conditions in the reactor to form a product stream comprising propylene, ethylene, mixed C4s and mixed C5s; c) separating the ethylene from the product stream; d) separating the propylene from the product stream; e) separating the mixed C4s from the product stream to form a mixed C4 stream comprising isobutylene, butenes and butanes; and f) passing ethylene from step c) and butenes from the mixed C4 stream to a metathesis process to produce propylene.
Abstract:
A process for converting oxygenates to polyolefins comprising: a) feeding an oxygenate containing feed to an oxygenate to olefins conversion reactor; b) contacting the oxygenate containing feed with a molecular sieve catalyst under oxygenate to olefins conversion conditions in the reactor to form a product stream comprising propylene, ethylene and mixed C4s; c) separating the ethylene from the product stream; d) separating the mixed C4s from the product stream to form a mixed C4 stream comprising isobutylene, 1-butene and 2-butene and butanes; e) removing isobutylene from the mixed C4 stream by contacting the mixed C4 stream with methanol or ethanol to form MTBE or ETBE; f) separating the 1-butene from the mixed C4 stream; g) passing at least part of the ethylene and at least part of the 1-butene to a polyethylene unit where the 1-butene is used as a co-monomer in the production of polyethylene.
Abstract:
This disclosure is directed to uses for a new crystalline molecular sieve designated SSZ-101. SSZ-101 is synthesized using a N-cyclohexylmethyl-N-ethylpiperidinium cation as a structure directing agent.
Abstract:
The present invention relates to a low ductility steel tube for use in chemical engineering applications. In particular, the invention relates to a high strength steel tube which has low ductility at elevated temperatures. Such tubes are typically used in chemical plants for transporting reactants and products. One such application includes the use in plants for producing hydrogen and methanol. The tubes could also be used when producing ethylene and other hydrocarbons.
Abstract:
Carbon monoxide and molecular hydrogen are converted to an alcohol mixture, which is separated into a first, methanol-containing stream and a second, C2+alcohol-containing stream. The first stream's methanol is converted into a propylene-rich product, and the second stream's C2+ alcohol is converted to ethylene and additional propylene.
Abstract:
A method for thermo-catalytically producing C4+ hydrocarbons from lignocellulosic biomass solids is provided by reducing the water content of the biomass feed prior to biomass hydrothermal hydrocatalytic conversion.
Abstract:
A catalyst composition includes a zeolite, a binder, and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition comprising about 50 wt% or less of the binder based on a total weight of the catalyst composition, the catalyst composition having a micropore surface area of at least about 340 m 2 /g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of (a) a mesoporosity of greater than about 20 m 2 /g; and (b) a diffusivity for 2,2-dimethylbutane of greater than about 1 x 10 -2 sec -1 when measured at a temperature of about 120°C and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).
Abstract:
Methods for organic compound conversion are disclosed. Particular methods include providing a first mixture comprising ≥ 10.0 wt% of at least one oxygenate, based on the weight of the first mixture; contacting said first mixture in at least a first moving bed reactor with a catalyst under conditions effective to covert at least a portion of the first mixture to a product stream comprising water, hydrogen, and one or more hydrocarbons; and separating from said product stream (i) at least one light stream and ii) at least one heavy stream, wherein the method is characterized by a recycle ratio of ≤ 5.0.