Abstract:
A process to catalytically transform natural gas liquid (NGL) into higher molecular weight hydrocarbons includes providing an NGL stream, catalytically dehydrogenating at least a portion of the NGL stream components to their corresponding alkene derivatives, catalytically oligomerizing at least a portion of the alkenes to higher molecular weight hydrocarbons and recovering the higher molecular weight hydrocarbons. The NGL stream can be extracted from a gas stream such as a gas stream coming from shale formations. The higher molecular weight hydrocarbons can be hydrocarbons that are liquid at ambient temperature and ambient pressure.
Abstract:
Verfahren zur Herstellung von Olefinen und Wasserstoff durch Dehydrierung von Kohlenwasserstoffen unter Verwendung eines Katalysatorsystems, welches eine Komponente 1 enthält, die aus einer oxidischen Mischverbindung von ΖrΟ 2 und einem oder mehreren Metalloxiden aus Elementen der Gruppen 1 bis 4, 13 oder 14 des Periodensystems (IUPAC) besteht, und die auf ihrer Oberfläche eine Komponente 2 in einer Oberflächendichte von 0,0001 bis 1 Atome nm -2 enthält, welche aus einem oder mehreren Metallen aus den Gruppen 8 bis 11 des Periodensystems (IUPAC) besteht.
Abstract:
The present invention is directed to improved methods and systems for increasing the efficiency of a dehydrogenation section of an alkenyl aromatic hydrocarbon production facility, wherein an alkyl aromatic hydrocarbon, such as ethylbenzene, is dehydrogenated to produce an alkenyl aromatic hydrocarbon, such as styrene. The disclosed methods are more energy-efficient and cost effective than currently known methods for manufacturing styrene. The methods and systems advantageously utilize multiple reheat exchangers arranged in a series and/or parallel configuration that result in an energy consumption reduction and, consequently, a utility cost savings, as well as a reduction in styrene manufacturing plant investment costs.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Kohlenwasserstoffkonversion in Gegenwart einer sauren ionischen Flüssigkeit. Die Kohlenwasserstoffkonversion ist vorzugsweise eine Isomerisierung, insbesondere eine Isomerisierung von Methylcyclopentan (MCP) zu Cyclohexan. Vor der Kohlenwasserstoffkonversion wird eine Hydrierung durchgeführt, vorzugsweise wird Benzol zu Cyclohexan hydriert. Das bei der Hydrierung und/oder Isomerisierung anfallende Cyclohexan wird vorzugsweise aus dem Verfahren isoliert. In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden nach der Hydrierung und vor der Kohlenwasserstoffkonversion, insbesondere vor der Isomerisierung, Leichtsieder, insbesondere C 5 -C 6 -Alkane wie Cyclopentan oder iso-Hexane, aus dem zur Kohlenwasserstoffkonversion verwendeten Kohlenwasserstoffgemisch destillativ abgetrennt.
Abstract:
The invention relates to a catalyst composition comprising (a) a metal M selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), rhenium (Re), ruthenium (Ru) and iridium (Ir), (b) tin (Sn), (c) zinc (Zn), (d) alkaline earth metal and (e) a porous metal oxide catalyst support, wherein the amount of each of elements (a), (b) and (d) is independently chosen in the range of from 0.1 to 5 wt.% based on the porous metal oxide catalyst support and wherein the amount of element (c) is chosen in the range of from 0.1 to 2 wt.% based on the porous metal oxide catalyst support. Furthermore, the invention also relates to a process for the preparation of said catalyst composition and its use in non- oxidative dehydrogenation of an alkane, preferably propane.
Abstract:
In the present invention a selective hydrogenation catalyst composition comprising (a) an inorganic oxide carrier; and (b) fine-alloy particles of an active metal and a promoter metal components dispersed on the surface of the inorganic oxide carrier is disclosed. The improved dispersion of the active component is found to be around 30 % of surface area of the carrier surface as measured by H 2 Chemisorption method. The improved dispersion of fine alloy particles of the present invention is accomplished by employing an equilibrium adsorption impregnation method.
Abstract:
A method is provided for converting synthesis gas to liquid hydrocarbon mixtures useful as distillate fuel and/or lube base oil. The synthesis gas is contacted with a synthesis gas conversion catalyst comprising a Fischer-Tropsch synthesis component in an upstream catalyst bed thereby producing an intermediate hydrocarbon mixture containing olefins and C 21+ normal paraffins. The intermediate hydrocarbon mixture is subsequently contacted with a hydroisomerization catalyst and an olefin saturation catalyst, thereby resulting in a product containing no greater than about 25 wt% olefins and containing no greater than about 5 wt% C 21+ normal paraffins. The hydroisomerization and olefin saturation catalysts may be in separate beds or mixed in a single bed downstream of the synthesis gas conversion catalyst.
Abstract:
Предложена реакционно-ректификационная система для получения высокооктановых компонентов бензина, содержащая по меньшей мере три реакционные зоны, одна из которых является зоной гидроизомеризации бензола, другая является зоной изомеризации гексанов и третья является зоной изомеризации пентана, причем зона гидроизомеризации бензола расположена ниже всех остальных реакционных зон и находится в нижней части колонны, зона изомеризации гексанов находится выше зоны питания и ниже зоны изомеризации пентана, система также содержит по меньшей мере один боковой отбор, расположенный выше зоны изомеризации гексанов и ниже зоны изомеризации пентана.
Abstract:
Methods, devices, and computer-readable media related to use of a scanner device and access node to repair a device-under-repair are disclosed. The first and second connections can utilize a first communication protocol (e.g., Ethernet or Bluetooth) and the third connection can utilize a different second communication protocol (e.g., OBD-II). In response to receiving a first communication addressed to a first address, the first communication can be sent from the scanner device via the second connection. In response to receiving a second communication addressed to a second address, where the first address differs from the second address, the second communication can be converted to conform to the second communication protocol and the converted second communication can be sent from the scanner device via the third connection.
Abstract:
The present invention is directed to processes using a new crystalline molecular sieve designated SSZ-81, which is synthesized using a structure directing agent selected from 1,5-bis(1-azonia-bicyclo[2.2.2]octane)pentane dications, 1,5-bis(1,4-diazabicyclo[2.2.2]octane)pentane dications, and mixtures thereof.