A method of treating a wiring substrate according to an embodiment includes, in a semi-additive process: (1) contacting the wiring substrate with a pre-etching treatment liquid composition containing a chloride ion, the wiring substrate containing a seed layer formed of an electroless copper and a wiring pattern formed of an electrolytic copper; and (2) continuously, etching the wiring substrate with an etching liquid composition containing a hydrogen peroxide, a sulfuric acid, a tetrazole, a chloride ion, a copper ion and a water.
A transparent conductive film 1 includes: a substrate film 11 composed of a transparent resin; a high refractive index coat layer 12 formed on a surface of the substrate film 11, and having an optical refractive index higher than that of the substrate film 11; a low refractive index coat layer 13 formed on a surface of the high refractive index coat layer 12, and having an optical refractive index lower than that of the high refractive index coat layer 12; a moisture-proof underlying layer 14 formed on a surface of the low refractive index coat layer 13 and composed of silicon oxide; and a transparent wiring layer 15 patterned on a surface of the underlying layer 14 and composed of crystalline ITO having an optical refractive index higher than the underlying layer 14. The crystallite size of ITO in the transparent wiring layer 15 is 9 nm or less.
Disclosed is an electronic module with high routing efficiency and other new possibilities in conductor design. The electronic module comprises a wiring layer (3), a component (1) having a surface with contact terminals (2) and first contact elements (6) that connect at least some of the contact terminals (2) to the wiring layer (3). The electronic module is provided with at least one conducting pattern (4) on the surface of the component (1) but spaced apart from the contact terminals (2). The electronic module further comprises a dielectric (5) and at least one second contact element (7) that connects the conducting pattern (4) to the wiring layer (3) through a portion of said dielectric (5). Methods of manufacturing such modules are also disclosed.
The present invention provides a process for producing a metalized substrate in which a predetermined metal paste composition is applied onto a sintered nitride ceramic substrate (10); the resultant is fired in a heat-resistant container at a predetermined condition; and the substrate (10) and a metal layer (30) are bonded together to each other through a titanium nitride layer (20).
A differential transmission path composed of a pair of transmission lines is formed on an upper surface of a base insulating layer. A ground conductor layer is formed on a lower surface of the base insulating layer. The ground conductor layer is opposite to the differential transmission path with the base insulating layer sandwiched therebetween. A spacing between the transmission lines at a part of the differential transmission path is smaller than a spacing between the transmission lines at another part of the differential transmission path. A thickness of a part of the ground conductor layer overlapping the part of the differential transmission path is smaller than the thickness of another part of the ground conductor layer overlapping the another part of the differential transmission path.
An example particle accelerator includes a coil to provide a magnetic field to a cavity; a particle source to provide a plasma column to the cavity; a voltage source to provide a radio frequency (RF) voltage to the cavity to accelerate particles from the plasma column, where the magnetic field causes particles accelerated from the plasma column to move orbitally within the cavity; an enclosure containing an extraction channel to receive the particles accelerated from the plasma column and to output the received particles from the cavity; and a structure arranged proximate to the extraction channel to change an energy level of the received particles.
A surface wave plasma (SWP) source couples microwave (MW) energy into a processing chamber through, for example, a radial line slot antenna, to result in a low mean electron energy (Te). An ICP source, is provided between the SWP source and the substrate and is energized at a low power, less than 100 watts for 300 mm wafers, for example, at about 25 watts. The ICP source couples energy through a peripheral electric dipole coil to reduce capacitive coupling.
A laser-produced plasma extreme ultraviolet source has a buffer gas to slow ions down and thermalize them in a low temperature plasma. The plasma is initially trapped in a symmetrical cusp magnetic field configuration with a low magnetic field barrier to radial motion. Plasma overflows in a full range of radial directions and is conducted by radial field lines to a large area annular array of beam dumps.
An apparatus for generating extreme ultraviolet light may include: a chamber having an opening through which a laser beam is introduced into the chamber; a reference member on which the chamber is mounted; a target supply unit for supplying a target material to be irradiated by the laser beam to a predetermined region inside the chamber; a laser beam focusing optical system for focusing the laser beam in the predetermined region inside the chamber to turn the target material into plasma; and a collector mirror for collecting the extreme ultraviolet light emitted from the plasma.
A static electricity preventing circuit and a display device including the same are disclosed. In one aspect, the static electricity preventing circuit includes a power source voltage supply unit configured to apply a power source voltage to drive a display panel, wherein the display panel comprises a plurality of pixels respectively displaying images through light emission according to data voltages of image data signals. It also includes a signal wire unit configured to transmit lighting test signals for a lighting test of the pixels included in the display panel. It further includes a resistor unit positioned between the power source voltage supply unit and the signal wire unit and configured to discharge static electricity generated in the signal wire unit through the power source voltage supply unit.
Systems and methods for maintaining the illumination intensity of one or more LEDs above a minimal intensity level. The systems and methods may include: (1) a current regulator for regulating the current in a circuit; (2) a voltage source for applying current to a circuit; (3) an LED with a minimal intensity level that correlates to a set-point temperature; and (4) a thermal sensor that is in proximity to the LED and adapted to sense a temperature proximal to the LED. The thermal sensor may transmit a signal to the current regulator if the sensed temperature exceeds the set-point temperature. Thereafter, the current regulator may take steps to regulate the current in order to maintain the LED illumination intensity above the minimal intensity level.
An electrical device such as a switch includes a light source and light sensor to detect ambient light and actuate the light source when the ambient light is below a predetermined level. The light switch has a pivotally mounted rocker actuator with a first outer face on one side of the pivot axis at a first end of the housing and a second outer face on a second side of the pivot axis at a second end of the housing. The light source is positioned in the housing to illuminate a light transmitting area of the first outer face of the actuator. The light sensor and a light sensor lens for directing ambient light to the light sensor are positioned at or near the second outer face at the second end of the housing.
A light generating device (1) is provided with at least a voltage input (21) adapted for receiving a variable voltage, at least three LED circuits (10), coupled with said voltage input (21), wherein each LED circuit (10) comprises a LED unit (14) and controllable current regulator (15) to control the current through said LED circuit (10). The light generating device (1) further comprises a controllable switch matrix (30) comprising a plurality of switches (25, 26, 27), said switch matrix (30) is configured to operate in at least three different switching modes and a controller (50), connected at least with said switch matrix (30), configured to determine said variable operating voltage and to control the switching mode of said switch matrix (30) in dependence of the determined operating voltage. To provide an efficient operation of such device (1) with a variable operating voltage, such as an AC voltage, in a first switching mode, said LED units (10) are connected parallel to each other, in a second switching mode, at least two of said LED units (10) are connected in series and in a third switching mode, said LED units 10 are connected in series with each other.
Embodiments of a dimmable driver circuit for a light-emitting diode (LED) load and a method for driving an LED load are described. In one embodiment, a dimmable driver circuit for an LED load includes an alternating current (AC)-direct current (DC) rectifier configured to convert an AC input voltage into a DC voltage, a damper and filter circuit configured to provide a latching current to a phase-cut dimmer and to suppress an inrush current caused by phase-cut dimming, and to filter electromagnetic interference (EMI) noise from the DC voltage, and a switching converter circuit connected to the damper and filter circuit and configured to operate in a boundary conduction mode (BCM) with a constant on-time to generate DC power for the LED load in response to the DC voltage. Other embodiments are also described.
System and method for dimming control. The system includes a system controller, a transistor, and a resistor. The system controller includes a first controller terminal and a second controller terminal. The transistor includes a first transistor terminal, a second transistor terminal and a third transistor terminal. The resistor including a first resistor terminal and a second resistor terminal. The first transistor terminal is coupled, directly or indirectly, to the second controller terminal. The first resistor terminal is coupled to the second transistor terminal. The second resistor terminal is coupled to the third transistor terminal. The system controller is configured to receive an input signal at the first controller terminal and to generate an output signal at the second controller terminal. The transistor is configured to receive the output signal at the first transistor terminal and to change between a first condition and a second condition.
A power supply for a high frequency heating is provided. When processes from a non-oscillation to an oscillation of a magnetron are finely classified, the non-oscillation (a start mode), the oscillation (a start mode), and the oscillation (a steady mode) are obtained. A problem resides in an unstable state immediately after the oscillation. When a PWM setting value at this time is set to a value lower than a PWM setting value in the steady mode, even if the PWM setting value during the steady mode is set to a maximum output value, the input current is not controlled to a large current including the over-shoot immediately after the oscillation. After the magnetron shifts to a stable state, the PWM setting value shifts to a PWM setting value of an actual steady mode, so that the over-shoot of the input current can be suppressed as much as possible.
A window-glass heating device for providing each adequate heat amount in accordance with each parts of the glass and for securing the good visibility to a driver, comprises: a first heater having a transparent heating film attached on the whole surface of the vehicle window glass; a second heater having a transparent heating film attached on a part of the surface of the vehicle window glass and being arranged at least overlapped with the first heater; a heating-requirement detector for detecting at least one of heating requirements such as the outside temperature, the inside temperature and any input through the operational equipments of vehicle inside; and a heating controller for controlling heat amount of the first and second heaters depending on the heating requirement.
A medium-voltage heating element assembly. The medium-voltage heating element assembly can include a dual core having an inner core and an outer core. Segments comprising the inner core and the outer core can be staggered. Furthermore, the dual core can include a notch-and-groove interface to prevent axial rotation of the inner core and/or inner core segments relative to the outer core and/or outer core segments. A bushing of the heating element assembly can include a stepped region, and the bushing can interface with the dual core along the stepped region.
Aspects of a method and system for multiple HCI transport for Bluetooth® Host controllers may include communicating between a plurality of Bluetooth® hosts and a single Bluetooth® host controller by using one or more Bluetooth® host controller interfaces. Control of the Bluetooth® host controller interfaces may be assigned to one or more of the Bluetooth® hosts. Control of the Bluetooth® host controller interfaces may be switched among different Bluetooth® hosts using various protocol commands may be used to communicate between Bluetooth® hosts to control switching. Communications between Bluetooth® hosts may occur over interfaces different from the Bluetooth® host controller interfaces. Switching may occur without resetting the Bluetooth® hosts and Bluetooth® host controller.
A method and system for managing the allocation of uplink transmission resources. A first subscriber device may communicate with a second subscriber device over a local communication link. The first subscriber device may also transmit data over an air interface to a radio access network (RAN) serving the first subscriber device, with the first subscriber device serving as a proxy between the second subscriber device and the RAN. In response to the data including first data originated by the first subscriber device and second data originated by the second subscriber device that is received by the first subscriber device from the second subscriber device over the local communication link, the first subscriber device may be arranged to apply a different transmission priority for the transmitting of the first data over the air interface than for the transmitting of the second data over the air interface.
A method, system and device are provided for managing LIPA and/or SIPTO connection releases when UE moves out of residential/enterprise network coverage in case service continuity is not supported for the LIPA/SIPTO PDN connection(s). To address problems caused by not providing service continuity for LIPA/SIPTO PDN connections, the PDN connection/PDP context created in the HeNB/HNB by the MME/SGSN includes context information related to the UE indicating whether such connection is a LIPA PDN connection PDN connection or not. In addition, each UE may be configured to reconnect or not reconnect to the PDN corresponding to a certain APN or service, depending on how the PDN connection was disconnected by the network.
An apparatus for interconnecting multiple computer networks, each computer network using a different protocol suite and comprising multiple nodes, the apparatus being a node of each computer network, the apparatus comprising: a transceiver configured to receive data from any node of any one of the multiple computer networks, the received data being for transmission to a node of a different one of the multiple computer networks; and a processor configured to identify the node of the different one of the multiple computer networks based on the received data, to determine a protocol suite of the different one of the multiple computer networks using the memory, to process the received data so that the received data appears to have been transmitted according to the determined protocol suite, and to cause the transceiver to transmit the processed received data to the node of the different one of the multiple computer networks.
A communication apparatus functioning as a master device denies participation by new communication apparatuses in a network in communication parameter configuration mode based on participation statuses of communication apparatuses functioning as slave devices in the network. The communication apparatus functioning as a master device establishes the network in communication parameter configuration mode between the communication apparatuses participating in the network, and configures communication parameters.
The present invention provides a random access method, a user equipment and a network equipment. The method comprising: acquiring a random access group scheduling identity, wherein the random access group scheduling identity is shared by user equipments belonging to a first group; receiving control signaling scrambled by the random access group scheduling identity on a PDCCH, and decoding the control signaling according to the random access group scheduling identity; receiving a data packet on a PDSCH according to the decoded control signaling, wherein the data packet comprises indication information used for instructing at least one UE belonging to the first group to perform a random access; and determining that the random access is needed to be performed according to the indication information, and performing the random access. The embodiments of the present invention may save PDCCH resource.
A random access procedure for use by a UE wireless communication terminal in communicating with a base station (or Node-B or eNB) of a radio access network, and in particular a E-UTRA network. A random access preamble is sent by the UE via RACH separate and prior to a random access message burst, which is sent on SCH but not until the UE receives one or more messages indicating an acknowledgment of the preamble and providing an allocation on SCH for use in transmitting the message burst, and also providing a preamble identifier, which the radio access network can then use to request retransmission of the message burst if necessary.
A number of features for enhancing the performance of a communication system, in which data is transmitted between a base station and a plurality of subscriber stations located different distances from the base station, are presented. The power transmission level, slot timing, and equalization of the subscriber stations are set by a ranging process. Data is transmitted by the subscriber stations in fragmented form. Various measures are taken to make transmission from the subscriber stations robust. The uplink data transmission is controlled to permit multiple access from the subscriber stations.
Provided are a method of performing contention based channel access by classifying a contention period into a beamformable contention period in which a beamforming is allowed and a non-beamformable contention period in which the beamforming is interrupted so as to resolve an issue regarding channel access occurring due to an introduction of a directional antenna for handling a path loss in a wideband wireless communication system according to an embodiment of the present invention, and a method for maximizing a spatial reuse gain by managing, for each direction, information about a transmission time of a message received from a dispersion device.
A control circuit includes a detection circuit configured to detect a load current flowing into a load, and a setting circuit configured to set switching operations on first and second switch circuits according to the load current. The setting circuit is configured to cause both the first switch circuit and the second switch circuit to be in an off state, when a power supply stop signal is input from an outside, if the load current is in a first range, and to cause the first switch circuit to perform an on-off operation on the basis of the output voltage while causing the second switch circuit to be in the off state, if the load current is higher than a first reference value that is an upper limit of the first range.
Multiple field units in a CDMA system are synchronized for communication with a base station using a shared forward and reverse link channel. Each field unit is assigned a time slot in a forward link channel to receive messages from the base station. Likewise, each field unit is assigned a time slot on a common reverse link channel for transmitting messages to the base station. Timing alignment among each of many field units and the base station is achieved by analyzing messages received at the base station in a corresponding time slot from each field unit. Thereafter, a message is transmitted in a corresponding time slot to a particular field unit from the base station for adjusting its timing so that future messages transmitted from the field unit are received in the appropriate time slot at the base station. In this way, minimal resources are deployed to maintain communication and precise synchronization between a base station and each of multiple users, minimizing collisions between field units transmitting in adjacent time slots on the reverse link.
The present disclosure describes systems and techniques relating to wireless communications. According to an aspect of the described systems and techniques, an apparatus includes: circuitry configured to receive wireless communication transmissions having periodic synchronization signals transmitted at a fixed interval, wherein the periodic synchronization signals convey information used to establish communication between wireless communication devices; and circuitry configured to acquire the periodic synchronization signals of the wireless communication transmissions by, at least in part, (i) calculating objective function values for hypotheses of parameter sets for a current period, (ii) combining only a portion of the calculated objective function values with stored objective function value data from a prior period to form combined data used in signal acquisition, and (iii) storing the combined data or the portion of the calculated objective function values for use in a next period.
A method of wireless communication utilizing a communication system that includes a baseband module that is in communication with a radio module via an Ethernet communication link. The method of wireless communication can include the synchronization of the internal reference clocks of the baseband module and radio module. A hierarchical arrangement can be used to synchronize the internal reference clocks with a grandmaster clock within the communication system. Further, packet transit calculations can be used to synchronize the internal reference clocks.
A system and method for wireless devices to efficiently receive communications by transmitting and receiving specialized beacon messages. Particularly, a wireless device may await reception of a synchronizing beacon message from a transmitting device. A relative position identifier within the synchronizing beacon message may then allow the wireless device to anticipate future beacon message transmissions and to synchronize its reception pattern with the transmitter. In this manner the wireless device need only receive and decode beacon messages germane to its operation.
In a multi-level power transmission scheme, an access point transmits at one power level, while repeatedly transmitting at a burst power level for short periods of time. For example, a femto cell may transmit a beacon with periodic high power bursts of short duration, while the femto cell transmit power also undergoes high power bursts aligned with the beacon bursts. In a network listen-based power control scheme, an access point listens for one or more parameters sent over-the-air by the network and then defines transmit power based on the received parameter(s). In some aspects, beacon transmit power may be set based on a defined outage radius parameter and the total received signal power on a channel. In some aspects, access point transmit power may be set based on a defined coverage parameter and the received energy associated with signals from access points of a certain type.
The invention relates to a method 10 in a base station 2 of a communication system 1 comprising one or more user equipment 4. The method 10 comprises the steps of: detecting 11 that no control transmission or data transmission is being prepared for the one or more user equipment 4; and transmitting 12 a downlink inactivity indicator to the one or more user equipment 4. The invention also encompasses methods in a user equipment, computer programs, and computer program products.
A wireless network device in a wireless network that includes a plurality of wireless network devices comprises an RF transceiver that transmits and receives data packets and that periodically transmits or receives a beacon. A control module communicates with the RF transceiver, determines a group identifier and a station identifier based on the beacon, and selects one of a default IFS time and a second IFS time based on a data packet received.
A wireless service of a first type is scanned. A first station associated with the first type is selected. A first indicator of expected service conditions associated with the first station is received. Based on the first indicator, a wireless service of a second type is scanned. A second station associated with the second type is selected. A second indicator of expected service conditions associated with the second type is received. Based on the first indicator and the second indicator, one of the first type and second type is selected to receive wireless service.
A quite simple and effective way for simplifying the mobile system for the mobile broadband customers, thereby lowering the equipment costs and in the end allowing for more competitive flat rate fees, is to direct the traffic from mobile broadband devices (110) to dedicated gateways (120). The mobile broadband device (110) is comprised in a user equipment (105) in a wireless communication network (100). The wireless communication network (100) comprises a network node (115) is arranged to be connected to the mobile broadband device (110). First, the mobile broadband device (110) sends (200, 300) an attach request message to the network node (115). The attach request comprises an information element indicating that the device (110) is a broadband device. Then, the device (110) receives (301) an attach accept message from the network node (115) comprising address information of the dedicated gateway (120). After the device (110) has received the attach accept message it sends (302, 205) traffic to the dedicated gateway (120).
Many concentric/overlaying networks exist in one or more wired or wireless networks simultaneously. The network box or mobile device may use one or more transmission protocols as deemed optimal and appropriate by the local server or the super server located in a LAN, WAN or the Internet. The units have the ability to multiplex between one or more transmission protocols. T/R may be located within or in close proximity to computer system to route the data. The software capability that is resident at the server level is capable of dynamically determining a number of factors for best data transfer, the best transmission frequencies and protocols, the best error correction and channel coding algorithms and multiplexes the transmission paths and tasks. Various optical and wireless protocols can co-exist in a network. Multiple communication environments are enabled by the data paths having devices such as CT/MDs, network switch boxes, and combinations.
Provided is a network access management method of a terminal, the method including determining whether a terminal located adjacent to a railway dedicated wireless communication network is a common terminal or a railway dedicated terminal, based on a unique identifier (ID) of the terminal, and handing over the terminal to a different communication network allowing an access based on a result of the determining.
A method, apparatus and computer program are provided for controlling a communications state of an apparatus with respect to a serving cell in a communications network. The apparatus is configured with a first and second, different signal threshold, wherein the first and second signal thresholds are dependent on a reference signal. A value of a signal associated with at least one cell in the communications network is monitored. A timer is configured with a first operative state when the monitored signal value is determined to exceed the first signal threshold and a second operative state when the monitored signal value is determined to be lower than the second signal threshold. Responsive to a value of the timer satisfying a predetermined time parameter, the communications state of the apparatus with respect to its serving cell is adjusted.
There are provided measures for handover control for backhaul connections, said measures exemplarily including evaluation of the suitability of an access node cell in access network as target for a handover of a terminal based on delay information being indicative of an expected packet delay in a cell of the access node, wherein such delay information may be generated and/or exchanged in the access network. Said measures may exemplarily be applied for improving handover control in relay-enhanced access networks or networks that contain access nodes connected via different kinds of backhaul that can result in different end-to-end packet delays.
A method and devices for integrating a cellular radio network with a WiFi network are disclosed. According to one aspect, a method includes selecting, at a base station having a cellular radio subsystem and a WiFi radio subsystem, at least one of a cellular radio network carrier and a WiFi carrier to carry at least one data flow from the base station to a user equipment. The method further includes transmitting, from the base station to a user equipment, a control signal to cause the user equipment to select at least one of a cellular radio subsystem of the user equipment and a WiFi radio subsystem of the user equipment to receive the selected at least one of the cellular radio network carrier and the WiFi carrier. Data from the at least one data flow is transmitted on the at least one selected carrier.
A method of and apparatus for handover between a 3GPP based network and a non-3GPP network is disclosed where a policy update to a new gateway is requested. A confirmation of the policy update is sent from the policy and charging rules function (PCRF) to the 3GPP packet data network gateway (PDN GW). The new gateway also confirms the policy update to the currently serving gateway. The tunnel endpoints and radio resources are released between the PDN GW and the evolved Packet Data Gateway (ePDG), thereby freeing the resources previously used by the wireless transmit/receive unit (WTRU). A release acknowledgement is sent from the serving gateway to the PCRF confirming the policy update process is complete. The method may be used for handover between 3GPP and non-3GPP networks and vice versa. The method and apparatus may be practiced over the S2b or S2c interfaces.
A method and system for reporting performance and controlling mobility between multiple different radio access technologies are disclosed. According to one aspect, a controller in a network collects performance data concerning at least a first network operating according to a first radio access technology, RAT, and a second network operating according to a second RAT, the first RAT being different from the second RAT. The controller includes a performance monitoring collector, PMC, configured to collect performance data from at least a node of the first RAT and from at least a node of the second RAT. The collected performance monitoring data is analyzed to trigger selection of at least one serving radio cell for a user equipment, UE, connection based on the analysis.
A mobile communication method according to the present invention includes the steps of: transmitting an “Extended Service Request” from a mobile station UE in Idle mode to a mobility management node MME via a radio base station eNodeB; transmitting an “Initial UE Context Setup Request” from the mobile station UE to the radio base station eNodeB, the “Initial UE Context Setup Request containing priority call information; and preferentially allocating resources to the E-RAB for the mobile station UE by the radio base station eNodeB based on the priority call information contained in the received “Initial UE Context Setup Request.”
Conventional quality of service (QoS) treatment is extended to over-the-top (OTT) applications transmitting data over a commercial wireless network via a virtual private network (VPN) tunnel. An over-the-top (OTT) application server and a VPN client/server routing data to/from that OTT application server via a VPN tunnel, are integrated with a quality of service (QoS) server to enable the OTT application server and/or VPN client/server to request and get desired QoS treatment for application data routed by the OTT application server over the VPN tunnel. The QoS server forwards QoS rules received in a QoS request message to a policy and charging rules function (PCRF) on the OTT application/VPN client devices' home mobile network operator (MNO). If the client device is roaming, the PCRF on the home MNO forwards QoS rules to a PCRF on a serving MNO. QoS treatment is then carried out by the PCRF in a conventional manner.
A method for activating/deactivating secondary carriers of a User Equipment (UE) in a mobile communication system supporting carrier aggregation is provided. The method comprises, receiving a control message including an activation/deactivation Control Element (CE) in a first sub-frame from a Base station, identifying an activation command or a deactivation command of at least one secondary carrier based on the control message, determining whether a current sub-frame is a second sub-frame or not, performing at least one first operation for the at least one secondary carrier in a second sub-frame, and performing, when the activation/deactivation CE indicates deactivation of the at least one secondary carrier, at least one second operation for the at least one secondary carrier no later than the second sub-frame.
A method and system for formulating an SINR metric for cells using only the existing RSRP and RSRQ measurements. With this method and system side information is exchanged between eNBs of an E-UTRAN using the X2 interface where the X2 interface carries the X2 Application Protocol (X2AP). The side information is introduced either within X2AP messages exchanged between NB nodes or via modification of existing X2AP messages. Serving cell system information block (SIB) messages may also be modified or new SIB messages introduced to facilitate computation of an SNIR metric at a UE.
A method and system performs antenna tuning which enhances radio frequency (RF) tuner reliability within a wireless communication device (WCD). The WCD, in response to receiving a request to change an active RF tuning state, retrieves component usage data corresponding to components of a tuning circuit that is tunable to an RF operating channel. The WCD selectively determines, using device environment state data and/or RF state data and the component usage data, an RF tuning state tuned to the RF operating channel. The selected RF tuning state (a) satisfies tuning performance specifications and (b) enhances component reliability performance by minimizing an operational wear on tuning circuit components. The WCD configures the tuning circuit using the selected RF tuning state and tracks session parameter values for tuning circuit components during a corresponding communication session. Following completion of the communication session, the WCD uses the tracked session parameter values to update component usage data.
A method for verifying compliance of a communication device with one or more requirement specifications is disclosed. The method comprises establishing a link between a test system and the communication device, wherein the establishing comprises configuring two or more bearers, one or more control channels, and one or more uplink packet filters; closing a test loop comprising the test system and the communication device, wherein the closing comprises activating a test loop function of the communication device; sending units of data associated with different service data flows in a downlink of the test loop from the test system to the communication device, each of the units of data including information representing the service data flow associated with the unit of data; receiving the units of data at the communication device; transferring the units of data to an uplink transmission arrangement of the communication device; and verifying, at the test system, that each of the units of data is transmitted, by the communication device in an uplink of the test loop to the test system, on a correct bearer corresponding to the service data flow associated with the respective unit of data according to the one or more uplink packet filters. Corresponding test system and test loop function arrangement are also disclosed.
A method for managing a degraded mode of a cell of a cellular network including a site controller for controlling, via a packet network, transmitters distributed over various sites of the cell such that transmitters implementing the same pair of frequencies over different sites form a channel which, in dynamic mode, is allocated dynamically to any communication between terminals of the cell, the channel including a master transmitter selected by the controller. The method includes, in each master transmitter on detection of a failure of the controller: switching in degraded mode of the master transmitter, by associating with the channel a predefined communication known to the terminals, and transmission from the master transmitter, via the network, of a control message informing a control console connected to the packet network of the implementation of the degraded mode so that the console participates in a communication underway in the channel.
The amplify and forward relay method enhances QOS in wireless networks and is based on the switch-and-examine (SEC) and SEC post-selection (SECps) diversity combining techniques where only a single relay out of multiple relays is used to forward the source signal to the destination. The selection process is performed based on a predetermined switching threshold. Maximal-ratio combining (MRC) is used at the destination to combine the signal on the relay path with that on the direct link.
A method and apparatus for determining available downlink bandwidth are described. The described aspects may include estimating an available link capacity of a cell for a user equipment. The described aspects may include estimating an available fraction of cell resources for the user equipment. The described aspects may include estimating available bandwidth of the cell for the user equipment as a function of the estimated available link capacity and the estimated available fraction of cell resources. Available bandwidth may be estimated for a cell in a Universal Mobile Telecommunications System (UMTS) system when the user equipment is in an idle mode and/or a connected mode. Available bandwidth may be estimated for a cell in a Long Term Evolution (LTE) system when the user equipment is in an idle mode and/or a connected mode.
A method, system, and medium are provided for dynamically enabling and disabling cyclic prefix within a long-term evolution (LTE) channel. A base station receives channel quality indication (CQI) reports indicating levels of ISI within the LTE channel. The base station determines whether the levels of ISI within the LTE channel are greater than, equal to, or less than a predetermined threshold level of ISI for the LTE channel. Based on the determination, the base station either enables or disables cyclic prefix within the LTE channel. In addition to levels of ISI, numbers of roaming users or cell edge users utilizing the LTE channel may affect whether cyclic prefix is enabled or disabled within the LTE channel.
A method and apparatus determines a physical location of a wireless infrastructure device. At least one coarse location data from an associated terminal device is determined. Additional coarse location data are stored and accumulated. The device location is considered accurate by determining that enough received coarse location data has been received.
A method and an apparatus for protecting data carried on an Un interface between a eNB and a relay node are disclosed. Three types of radio bearers (RBs) are defined over the Un interface: signaling radio bearers (SRBs) for carrying control plane signaling data, signaling-data radio bearers (s-DRBs) for carrying control plane signaling date; and data-data radio bearers (d-DRBs) for carrying user plane data. An integrity protection algorithm and an encryption algorithm are negotiated for control plane signaling data on an SRB, control plane signaling data carried on an s-DRB, and user plane data carried on a d-DRB. With the respective integrity protection algorithm and encryption algorithm, the data over the Un interface can be protected respectively. Therefore, the security protection on the Un interface is more comprehensive, and the security protection requirements of data borne over different RBs can be met.
The invention proposes several improvements related to the management of secure elements, like UICCs embedding Sim applications, these secure elements being installed, fixedly or not, in terminals, like for example mobile phones. In some cases, the terminals are constituted by machines that communicate with other machines for M2M (Machine to Machine) applications.
A method for intercepting calls from a remote or mobile device for customer self-support detects when users or subscribers dial one or more predetermined numbers. If the number corresponds to one of the predetermined numbers (such as a customer support number), the phone may intercept the call and display a list of potential solutions to the subscriber's problems. Various other features and embodiments art disclosed.
The present invention provides various methods and an apparatuses for supporting a group delegator (GD) in a wireless access system supporting Machine to Machine (M2M) communication. A method for selecting the group delegator (GD) in a wireless access system supporting the Machine to Machine (M2M) communication, according to one embodiment of the present invention, comprises the steps of: an M2M device belonging to an M2M group receiving a broadcasting message including a first critical value, which is used for selecting the GD; an M2M device generating a first random value, which is used for selecting the GD; and selecting the GD by comparing the first critical value and the first random value.
A mobile terminal device receives CM-related-information stored information from a receiving device that has received, from a sending device, the CM-related-information stored information together with a main program and a program containing a CM. Then, The mobile terminal device receives CM related information that is related to a CM from the sending device on the basis of the CM-related-information stored information. Then, the mobile terminal device displays the CM related information using text, a still image, or a moving image on the display screen in areas below a Web browser display, which is a normal display.
Embodiments provide a method and system for tracking a position of an object. The method may include creating a plurality of geofences on a map of a predefined location and identifying, by Wi-Fi trilateration, the position of the object within the created geofence. Further, a floor layout of the predefined location may be created by a handheld device. The position of the object can be represented on the created floor layout.
Techniques are provided which may be implemented in various methods, apparatus, and/or articles of manufacture to allow a mobile device to obtain certain location service(s) and/or the like from one or more computing devices that have been authorized for use. For example, in certain implementations, an authorizing location server may obtain a first message from a mobile device indicating a first set of location servers, determine a second set of location servers based, at least in part, on the first set of location servers, and transmit a second message to the mobile device indicating that the second set of location servers are authorized for location service related access by the mobile device.
Embodiments of the present invention address deficiencies of the art in respect to navigation in GPS-enabled mobile computing devices and provide a novel and non-obvious method, system and computer program product for location-based tsunami alerting navigational instructions in mobile computing devices. In an embodiment of the invention, a location-based tsunami alerting data processing system can be provided. The system can include a central processing unit coupled with a memory component, and a visual display along with location-based navigation logic that is enabled to compute a geographic zone of danger resulting from a tsunami, identify a geographic location for a mobile computing device corresponding to a subscriber, and render a set of personalized navigational instructions in the mobile computing device responsive to a determination that the subscriber is located in the geographic zone of danger.
A method and apparatus for connecting a Bluetooth device is provided herein. During operation a priority list is used by a Bluetooth piconet master. The Bluetooth piconet master will receive feedback from all slave devices, and then control connections among devices within the piconet based on the priority list and the feedback. The Bluetooth piconet master controls the piconet such that when a first Bluetooth device is connected to a lower-priority Bluetooth device, connection to a higher-priority Bluetooth device will only take place if the higher-priority Bluetooth device becomes “active” (as determined from the feedback). Therefore, as long as the higher-priority Bluetooth device remains “inactive”, the connection to the lower-priority Bluetooth device will remain.
A data transmission system and a data transmission method for a Bluetooth interface are provided. The data transmission system includes a central electronic apparatus and a peripheral electronic apparatus. The central electronic apparatus has a central Bluetooth module, and the peripheral electronic apparatus has a peripheral Bluetooth module. Some Bluetooth characteristic information are transmitted between the central Bluetooth module and the peripheral Bluetooth module, wherein the characteristic information indicates a plurality of pieces of buffer size information in the central and peripheral Bluetooth modules. The central and peripheral Bluetooth modules perform a data transmission operation therebetween based on the characteristic information through a central enable flag and a peripheral Bluetooth module enable flag respectively.
A headset computer includes a removablely attachable cellular radio. The cellular radio when detached from the headset computer may be coupled to a docking station for WIFI or similar network communication to the headset computer.
The present solution relates to providing a call service in a communication system, where in response to recognizing a predetermined event related to a user terminal (UEA), it is checked (203, 204) whether the user terminal (UEA) is a roaming user terminal (UEA) roaming in a visited packet switched network. It is also checked (203, 204) whether the user terminal (UEA) is defined to use a home network routing function in the visited packet switched network. If the user terminal (UEA) is a roaming user terminal (UEA) roaming in the visited packet switched network and defined to use the home network routing function in the visited packet switched network, the home network routing function is over overridden by performing (209) a forced setup of the call service to a local circuit switched network.
A predetermined sound is reproduced at a position of a sound source object. The sound is received by a plurality of virtual microphones, and a sound volume of the sound received at each virtual microphone is calculated. In addition, a localization of the sound received at the virtual microphone is also calculated. Furthermore, a localization of a sound to be outputted to a sound output section is calculated on the basis of the loudness and the localization of the sound received at each virtual microphone. The sound of the sound source object is outputted to the sound output section on the basis of the localization.
An acoustic apparatus includes a substrate, micro electro mechanical system (MEMS) die, and an integrated circuit. The substrate includes a permanent opening that extends there through. The micro electro mechanical system (MEMS) die is disposed over the permanent opening and the MEMS die includes a pierce-less diaphragm that is moved by sound energy. A first temporary opening extends through the substrate. The integrated circuit is disposed on the substrate and includes a second opening. The first temporary opening and the second opening are generally aligned. A cover that is coupled to the substrate and encloses the MEMS die and the integrated circuit. The cover and the substrate form a back volume, and the diaphragm separates the back volume from a front volume. The first temporary opening is unrestricted at a first point in time to allow gasses present in the back volume to exit through the temporary opening to the exterior and the pierce-less diaphragm prevents the gasses from passing there through. The first temporary opening is later substantially filled and closed at a second point in time, after which the acoustic device becomes operational.
Systems, methods, and computer-readable storage media for generating an immersive three-dimensional sound space for searching audio. The system generates a three-dimensional sound space having a plurality of sound sources playing at a same time, wherein each of the plurality of sound sources is assigned a respective location in the three-dimensional sound space relative to one another, and wherein a user is assigned a current location in the three-dimensional sound space relative to each respective location. Next, the system receives input from the user to navigate to a new location in the three-dimensional sound space. Based on the input, the system then changes each respective location of the plurality of sound sources relative to the new location in the three-dimensional sound space.
A miniature speaker and speaker cabinet are provided, wherein the speaker is enclosed in an oblong capsule with a sound output opening at one end and leads passing from a speaker coil inside the capsule to connection points externally on the capsule, and where the cabinet encloses the capsule and at one end thereof comprise a lead input opening with leads passing there through to the connection points on the capsule, and where the cabinet further comprise a sound exit opening opposite the lead input opening, which is in fluid communication with the sound output opening of the capsule, wherein the cabinet has an internal space surpassing external measures of the capsule in all directions defining a gap between the capsule and cabinet wherein the thus defined gap is filled out with a hardening silicone.
A floating mass transducer has a cylindrical transducer housing within which is a cylindrical transducer magnet arrangement with a magnetic pair of: i. an inner rod magnet disposed along the cylinder axis with a first magnetic field direction, and ii. an outer annular magnet surrounding the inner rod magnet along the cylinder axis with a second magnetic field direction opposite to the first magnetic field direction. Current flow through the drive coils creates a coil magnetic field that interacts with the magnetic fields of the transducer magnet arrangement to create vibration in the transducer magnet which is coupled by the transducer housing to the middle ear hearing structure for perception as sound. In addition, the opposing magnetic fields of the transducer magnet arrangement cancel each other to minimize their combined magnetic field and thereby minimize magnetic interaction of the transducer magnet arrangement with any external magnetic field.
A method of processing a voice output signal is applied in an earphone. The method processes the voice signal received from the earphone via a sound processing module inside the earphone such that a user can hear the voice signal more clearly. The earphone can be used as a hearing-aid when the user is not using a phone, and the earphone also can be used to help the user hear voice signals for phone communication.
A bone conduction hearing aid system with right and left ear microphone arrangements; right and left ear ambient sound signal processing units, right and left ear bone conduction output transducers for stimulating the user's right and left ear cochlea, respectively; a right and left ear cross-talk compensation filter units for generating right and left ear crosstalk compensation signals, respectively, from the processed audio signals of the respective signal processing unit according to an estimated transcranial transfer function; and means for subtracting the left ear cross-talk compensation signal from the processed audio signals of the right ear signal processing unit to generate the right ear output audio signals, and means for subtracting the right ear cross-talk compensation signal from the processed audio signals of the left ear signal processing unit to generate the left ear output audio signals.
The present universal wearable computing device relates to a hearing assistance system, device, method, and apparatus that provide a discreet approach to user hearing assistance, without relying on a conventional hearing aid. The hearing assistance system and the requisite electronics may be incorporated into frames that also function as eyeglasses with earphone(s) that may be connected to the frame to assist user hearing. An earphone may be configured with minimal electronics, such that a power source enable sound transmissions to the ear, is provided by a connection to the frame of the eyeglasses. In another example, the earphone is configured without any electronics and sound is transmitted to the user/listener's ear(s) via a psychoacoustic system. The sound quality of the transmissions to the earphones may be optimized using a tuning/equalizer application operating from a computing device, such as an app on a mobile device. The tuning/equalizer application can be used by the user/listener to optimize volume input levels to the earphone(s).
In one embodiment, a directional microphone array having (at least) two microphones generates forward and backward cardioid signals from two (e.g., omnidirectional) microphone signals. An adaptation factor is applied to the backward cardioid signal, and the resulting adjusted backward cardioid signal is subtracted from the forward cardioid signal to generate a (first-order) output audio signal corresponding to a beampattern having no nulls for negative values of the adaptation factor. After low-pass filtering, spatial noise suppression can be applied to the output audio signal. Microphone arrays having one (or more) additional microphones can be designed to generate second-(or higher-) order output audio signals.
A sound output mechanism of a mobile device capable of outputting visual and sound signals, for example, a smart phone, tablet PC, MP4 (including MP3) has an image output unit and a sound processing unit. The image output unit of the mobile device is arranged on the entire surface of a main body and the sound processing unit for outputting vibration power and sound is firmly secured at the inside thereof without increasing the volume or the area thereof.
The invention is directed to apparatus, systems and methods enabling a service provider to establish an optical demarcation point located at or within equipment controlled at least in part by a customer's domain such that the service provider's domain is able to directly control access of an optical signal to their domain, while simultaneously offering one or more of equipment redundancy for the remote optical demarcation control equipment located at the service provider's edge node, equipment redundancy for transceiver equipment providing hot-standby optical signal origination, or hot-standby facility redundancy where one end of said facility redundancy is located at said service provider's edge node.
Techniques to allow advertising or other secondary content to be dismissed for later follow up are disclosed. In various embodiments, a user input associated with dismissing a displayed content for later follow up is received. Display of the content item discontinued and a follow up record is stored based at least in part on the indication. The follow up record is used to provide to a user with which the user input is associated a follow up content associated with the dismissed content.
Systems and methods to display content are described. In some embodiments, program content is received from a content source. A method identifies product-related metadata associated with the program content where the product-related metadata includes at least one item displayed in the program content. The program content is communicated to a display device for presentation to a user in a first portion of the display device. The product-related metadata is communicated to the display device for presentation to the user in a second portion of the display device.
A data compression reduces redundancy over time using information from other frames and among different viewers. A personal compressed copy of content includes an array of keys, and encrypted copy of the content and a codebook. The codebook, which is not a copy of the content may be stored in shared memory.
The present invention relates to a method for transmitting a plurality of asynchronous signals, which includes: transmitting to a plurality of audio synchronizers a plurality of asynchronous audio signals which is detected by different audio input devices and is not synchronized with each other; synchronizing, by the plurality of audio synchronizers, the plurality of asynchronous audio signals, respectively; and multiplexing, by a multiple-channel time-division multiplexer, the plurality of synchronized audio signals to a multiple-channel time-division audio signal.
A digital receiver and a method of providing rating information in the digital receiver are disclosed, in which rating information on channels available in the digital receiver is provided to a user to provide the user convenience in selecting a channel. The method of providing rating information in a digital receiver comprises the steps of transmitting a first signal to a server in a rating notification mode, the first signal including setting information; receiving a second signal from the server, the second signal including setting details on rating information collection; transmitting a third signal to the server if the digital receiver is set as a rating information collecting target based on the second signal, the third signal including channel watching information of the digital receiver; and receiving a fourth signal from the server, the fourth signal including rating information.
This technology provides a method, non-transitory computer readable medium and device that recommends one or more events on an electronic device. The electronic device provides an event to the user. The user selects a frame to obtain certain information. The electronic device detects frame number and event identification (ID) number associated with selected frame and provides frame number and event ID number to recommendation server for identifying attributes and values. The recommendation server identifies the attributes and values associated with the selected frame. Thereafter, the recommendation server provides the attributes and the values to the electronic device for selection of at least value by the user. The electronic device provides selected values to the recommendation server. The recommendation server searches listing of plurality of events to determine one or more events having the selected values. The recommendation server may then provide the list of one or more events having the selected values to the electronic device.
Systems and methods for viewing dynamically customized audio-visual content are described. In some implementations, a process may include providing at least one selection signal indicative of a preference, receiving a dynamically customized audio-visual content including an audio-visual core portion at least partially modified with at least one revised content portion in accordance with the at least one selection signal, and displaying the dynamically-customized audio-visual content.
A system and method for integrating media productions imported from a plurality of content provider systems are described. The system and method may communicate with a plurality of content provider systems to import a set of media productions from each content provider system and may normalize each media production into a normalized media document format. The media productions may be matched to each other based on the normalized media documents. The system and method may also create and store a plurality of canonical objects based on the matches determined for the media productions. For example, if a given media production matches one or more other media productions then all of the matching media productions may be linked together by a canonical object, e.g., so that the canonical object functions as an abstract representation of all of the matching media productions.
There is described herein a system and method for processing data streams in a codec having multiple modules, whereby each module may process macroblocks using its own designated processing order. The processing order of a first module may differ from the processing order of a second module.
A method comprises extracting a picture type and size per picture frame from encoded first moving picture data, calculating a first characteristic quantity per picture frame and a first variation point indicating a variation point of the first characteristic quantity on the basis of the extracted picture type and size, extracting a picture type and size per picture frame from encoded second moving picture data, calculating a second characteristic quantity per picture frame and a second variation point indicating a variation point of the second characteristic quantity on the basis of the extracted picture type and size, and comparing the first characteristic quantity and variation point with the second characteristic quantity and variation point, and determining whether or not the first moving picture is similar to the second moving picture.
A video decoding method using an intra prediction, includes: predicting a current block from a plurality of neighboring blocks of the current block; decoding a bitstream to thereby extract residual signals; inversely quantizing the residual signals; inversely transforming the inversely quantized residual signals; and adding the inversely transformed residual signals to the predicted pixels in the predicted block, wherein the prediction of the current block comprises: calculating a plurality of weighted pixel values of pixels selected in the neighboring blocks by applying weights to the pixels selected in the neighboring blocks, wherein the weights are decided variably based on a position of a current pixel to be predicted in the current block; and deriving a predicted pixel value of the current pixel using the weighted pixel values.
A method for encoding motion vectors, comprises the steps of: determining motion vectors and flags for sub-blocks of a macroblock (“MB”) as a function of SAD calculations for the MB; generating one or more merged motion vectors for the sub-blocks of the MB as a function of the determined motion vectors and the determined flags; generating a merged macroblock motion vector for the MB as a function of the generated merged motion vectors and of the determined flags; and encoding the determined motion vectors as a function of the generated merged motion vectors and the generated merged macroblock motion vector.
A video encoder includes a buffer, a DMA engine, a motion estimator and a motion compensator. The buffer includes four pages where macroblocks are stored. The motion estimator generates a motion vector for a given macroblock. The motion compensator applies the motion vectors generated by the motion estimator to a previously encoded frame. Each of the four pages is concurrently accessed by one of the motion estimator, the motion compensator, and a channel of the DMA engine. Simultaneously the motion compensator accesses one page of the buffer containing a first set of macroblocks, the motion estimator accesses a second page of the buffer containing a second set of macroblocks, a first DMA engine channel writes a different set of macroblocks to a third page of the buffer and a second DMA engine channel writes another set of macroblocks to a fourth page of the buffer.
A method for decoding an image, according to the present invention, comprises the steps of: deciding a prediction mode that corresponds to a chroma component block; deciding a transform skip mode of the chroma component block from a plurality of transform skip mode candidates, according to the prediction mode that corresponds to the chroma component block; and reverse-transforming the chroma component block on the basis of the transform skip mode that is decided.
Systems, methods, and devices for encoding video data are provided. For example, an electronic device for obtaining and encoding video may include image capture circuitry, motion-sensing circuitry, and data processing circuitry. The image capture circuitry may capture an uncompressed video frame, and the motion-sensing circuitry may detect physical motion of the electronic device. The data processing circuitry may encode the uncompressed video frame based at least in part on a quantization parameter, which the data processing circuitry may determine based at least in part on whether the motion-sensing circuitry has detected physical motion of the electronic device.
Offset values, such as Sample Adaptive Offset (SAO) values in video coding standards such as the High Efficiency Video Coding standard (HEVC), may be improved by performing calculations and operations that improve the preciseness of these values without materially affecting the signal overhead needed to transmit the more precise values. Such calculations and operations may include applying a quantization factor to a video sample and at least some of its neighbors, comparing the quantized values, and classifying the video sample as a minimum, maximum, or one of various types of edges based on the comparison. Other sample range, offset mode, and/or offset precision parameters may be calculated and transmitted with metadata to improve the precision of offset values.
A method and apparatus for deriving a motion vector predictor (MVP) are disclosed. The MVP is selected from spatial MVP and temporal MVP candidates. The method uses a flag to indicate whether temporal MVP candidates are disabled. If the flag indicates that the temporal MVP candidates are disabled, the MVP is derived from the spatial MVP candidates only. Otherwise, the MVP is derived from the spatial and temporal MVP candidates. The method may further skip spatial redundant MVP removal by comparing MV values. Furthermore, the parsing error robustness scheme determines a forced temporal MVP when a temporal MVP is not available and the temporal MVP candidates are allowed as indicated by the flag. The flag may be incorporated in sequence, picture, slice level, or a combination of these levels.
A method for decoding video includes receiving a frame of the video that includes at least one slice and at least one tile. Each of the at least one slice and the at least one tile are not all aligned with one another. Each of the at least one slice is characterized that it is decoded independently of the other the at least one slice. Each of the at least one tile is characterized that it is a rectangular region of the frame and having coding units for the decoding arranged in a raster scan order. The at least one tile of the frame are collectively arranged in a raster scan order of the frame.
Various approaches for motion search refinement in a processing element are discussed. A k/2+L+k/2 register stores an expanded row of an L×L macro block. A k-tap filter horizontally interpolates over the expanded row generating horizontal interpolation results. A transpose storage unit stores the interpolated results generated by the k-tap filter for k/2+L+k/2 entries, wherein rows or columns of data may be read out of the transpose storage unit in pipelined register stages. A k-tap filter vertically interpolates over the pipelined register stages generating vertical interpolation results.
An imaging apparatus includes an image sensor having a plurality of light receivers that receive light, a detector to detect a monitoring voltage which corresponds to a difference between a dark voltage corresponding to dark current generated from at least one of the plurality of light receivers and a predetermined reset voltage, and a controller to reset the image sensor if the monitoring voltage detected by the detector becomes lower than a threshold voltage. Accordingly, the imaging apparatus can perform divided exposure promptly and accurately to minimize the problem occurring due to dark current.
Methods and systems are described for enabling the operation of a stereoscopic viewing device such that the viewing device provides a movable viewing window that enables the 3D rendering of 3D image data displayed by a backlit LCD device. In a particular implementation, the systems and methods disclosed herein are operable to control the operation of a pair of LCD shutter glasses.
A method for processing video data, comprises the steps of: decoding a stream of the video data; post-processing the decoded stream as a function of a video data packing format, wherein the decoded stream having first view pixels and second view pixels and wherein the first view pixels and the second view pixels are stored in line buffers according to the video data packing format; and outputting the post-processed stream to a display, wherein the line buffers output the first view pixels and the second view pixels to the display in a displayable format.
Provided are an apparatus and method for converting a two-dimensional (2D) image into a three-dimensional (3D) image. The method includes generating a first depth map by estimating depth information of an input image, wherein the input image is a 2D image; analyzing characteristics of the input image; predicting an error of the first depth map; determining a parameter for adjusting the first depth map based on the analyzed characteristics of the input image and the predicted error of the first depth map; adjusting the first depth map based on the determined parameter; and generating a 3D image of the input image based on the adjusted first depth map.
According to various embodiments of the present invention, the optical systems of light field capture devices are optimized so as to improve captured light field image data. Optimizing optical systems of light field capture devices can result in captured light field image data (both still and video) that is cheaper and/or easier to process. Optical systems can be optimized to yield improved quality or resolution when using cheaper processing approaches whose computational costs fit within various processing and/or resource constraints. As such, the optical systems of light field cameras can be optimized to reduce size and/or cost and/or increase the quality of such optical systems.
An imaging system according to the present disclosure includes: a polarized light source which emits illuminating light including a component of light that oscillates parallel to a first polarization axis; an image capturing unit IP which is configured to get simultaneously first, second, third and fourth pieces of image information S101, S102, S104 including pieces of information about light beams that fall within first, second, third and fourth wavelength ranges, respectively, based on light beams that have returned at the same point in time from an object that is irradiated with the illuminating light, the light beam falling within the fourth wavelength range having been emitted from the polarized light source and reflected from the object, oscillating parallel to a second polarization axis that is different from the first polarization axis, and belonging to the same wavelength range as the component of the illuminating light.
A scanning projector includes a brightness compensation component. The brightness compensation component modifies pixel brightness as a function of instantaneous scan phase of a sinusoidally scanning mirror. The brightness compensation component uses different brightness compensation functions based on whether the instantaneous scan phase is above or below a threshold. The threshold may correspond to a knee of a maximum laser power limit curve.
A method for handling interference during the transmission of a chronological succession of digital images (I) from a sender (S) to at least one receiver (R), in which the images to be transmitted show the face of a Speaker at least intermittently, involves images in the chronological succession that are unable to be decoded, or unable to be decoded satisfactorily, on account of the interference being replaced by synthentic images (P) at the receiver. The synthetic images are produced using phonetic data (LD) that are or have been extracted from digital voice data (SD) for the Speaker by means of phonetic recognition, the digital voice data being or having been transmitted together with the digital image data (I).
A projector that maintains energy reduction while adjusting and controlling lamp power and projects an OSD screen with high visibility is provided. The projector includes a light source output adjustment unit that controls output of a light source according to brightness of a video signal, and a superimposed image projection unit that superimposes a predetermined superimposed image on a projection image generated according to the video signal. The superimposed image projection unit generates multiple images with identical content but at least partially different brightness and projects a different superimposed image depending on the projection image.
A method of projecting an image onto a viewing surface uses scanning projector, such as a laser-beam-steering pico projector, which scans a laser beam across the viewing surface. Each pixel area on the viewing surface which is included within images defined by a high intensity display digital video data, and each pixel area on the viewing surface which is included within images defined by a low intensity display digital video data are scanned. The projector beam illuminates each pixel area on the viewing surface which is included within images defined by the high intensity display digital video data for a greater period of time than is spent illuminating each pixel area on the viewing surface which is included within images defined by other digital video data.
A sink apparatus, a source apparatus, a function block control system incorporating the sink and source, and related methods are provided. The source apparatus may be configured to analyze specification information related to and from the sink apparatus, generate a function block control signal for the sink apparatus based on the analyzed specification information and output properties of content to be transmitted, and transmit the generated function block control signal and the content to the sink apparatus. The sink apparatus may be configured to receive the function block control signal and content from the source apparatus, selectively turn on or off at least one function block from a plurality of function blocks according to the received function block control signal, and output the received content using at least one of the plurality of function blocks that remain on.
A method, computer-readable storage medium, reception apparatus, and information providing apparatus for generating a list of accessible channels. The method includes retrieving from a primary server terrestrial broadcast channel information associated with a predetermined geographical region. The terrestrial broadcast channel information includes, for each broadcaster associated with the predetermined geographical region, one or a combination of a broadcast channel and a secondary server location associated with the respective broadcaster. Service information is retrieved, for each of at least one broadcaster associated with the predetermined geographical region, from a secondary server associated with the respective broadcaster based on the terrestrial broadcast channel information. The reception apparatus determines, for each of the at least one broadcaster associated with the predetermined geographical region, whether the broadcast channel associated with the respective broadcaster is receivable by the reception apparatus. The reception apparatus generates the list of accessible channels based on the determination.
A solid-state imaging device according to the present disclosure includes: a pixel region which includes: pixel plugs formed above and electrically connected to a charge accumulation and diffusion layer, the pixel plugs respectively corresponding to pixels; lower pixel electrodes formed on and electrically connected to the pixel plugs, respectively, the lower pixel electrodes respectively corresponding to the pixels; an organic photoelectric conversion film formed on and electrically connected to the lower pixel electrodes; and an upper pixel electrode formed on and electrically connected to the organic photoelectric conversion film, and in which top surfaces of a global interconnect, a light shielding film, and a first AI pad formed in an uppermost layer of a multilayer interconnect structure disposed in a peripheral region is above a bottom surface of the organic photoelectric conversion film, the peripheral region being peripheral to the pixel region.
An apparatus, method, and computer-readable medium for motion sensor-based video stabilization. A motion sensor may capture motion data of a video sequence. A controller may compute instantaneous motion of the camera for a current frame of the video sequence. The controller may compare the instantaneous motion to a threshold value representing a still condition and reduce a video stabilization strength parameter for the current frame if the instantaneous motion is less than the threshold value. A video stabilization unit may perform video stabilization on the current frame according to the frame's strength parameter.
An apparatus, method, and computer-readable medium for motion sensor-based video stabilization. A motion sensor may capture motion data of a video sequence. A controller may compute instantaneous motion of the camera for a current frame of the video sequence and accumulated motion of the camera corresponding to motion of a plurality of frames of the video sequence. The controller may compare the instantaneous motion to a first threshold value, compare the accumulated motion to a second threshold value, and set a video stabilization strength parameter for the current frame based on the results of the comparison. A video stabilization unit may perform video stabilization on the current frame according to the frame's strength parameter.
A control apparatus includes a first calculation unit configured to calculate a first defocus amount by a phase-difference detection method using a first signal and a second signal, a second calculation unit configured to calculate a second defocus amount based on a contrast evaluation value of a synthesized signal, an instruction unit configured to give an instruction of focus control, and a control unit configured to perform the focus control in response to the instruction of the focus control by the instruction unit, the synthesized signal is a signal obtained by relatively shifting phases of the first and second signals and synthesizing the first and second signals, and the control unit refers to the second defocus amount prior to the first defocus amount in the focus control.
An apparatus and a method detect and connect a counterpart device by capturing an image of the counterpart device in a wireless device. A Relative Distance Value (RDV) between the wireless device and the counterpart device is determined via image capture using a camera. The counterpart device is identified using the determined RDV.
A camera module with internal structural elements housed inside a housing space formed by joining two cases together achieves a sufficient joint strength between both cases even though the thickness of the case walls is reduced to make the outer shape smaller, as well as a size reduction of the camera module is enabled, when the two cases are joined together by ultrasonic welding. The joint surfaces where the two cases are joined together are inclined relative to a plane orthogonal to the optical axis direction of a lens unit housed inside the camera module. Thereby, the area of joint surfaces is increased as compared with the case where the joint surfaces are parallel to the plane orthogonal. Also, since interference between a horn for applying ultrasonic waves during ultrasonic welding and the external connection part is avoided, the camera module can be made smaller.
A method for processing an array of pixels in a point cloud, comprises calculating local error limits for each distance value for each pixel in the processed point cloud data set. One may then determine the error bar. One begins a distance value adjusting loop by for each pixel in the processed point cloud data set by calculating the difference between the distance value in the pixel of the point cloud data set being processed and each of the neighboring pixels or the most suitable neighboring pixel distance value is determined whether the difference is within the range defined by the error bar. It the difference is not within the error bar, the distance value is changed for the pixel being processed by a small fraction while keeping the new distance value within the range defined by the original distance value for the pixel being processed plus or minus the error bar. If the difference is within the error bar the distance value in the pixel being processed is replaced by a weighted average value. The number of neighboring pixels with their distance values within the error bar for the pixel being processed is counted and if the count is greater than a predetermined threshold, average the counted distance values and substitute the average for the pixel distance value, but if the count is below the threshold leave the pixel distance value unchanged. It is determined whether loop exit criteria have been met and if loop exit criteria have not been met beginning the loop again, and if loop exit criteria have been met, terminating the loop.
An image processing device may generate text image data and background image data, based on original image data. The background image data may be generated by performing a correction process on target image data for setting a value of a first-type pixel having a tone value within a specific range before the correction process is performed to a tone value within the specific range after the correction process is performed, and setting a value of a second-type pixel having a tone value out of the specific range before the correction process is performed to a tone value within the specific range after the correction process is performed. The specific range may include a plurality of consecutive tone values that include a peak tone value. The peak tone value is included in a tone value distribution of the original image data and corresponds to a background of a text.
An image reading device includes a first and second document tables, a document transport member, and a reading unit. The first document table supports a document sheet. The second document table adjacent to the first document table allows the document sheet to pass therethrough while the document sheet is kept separate from the second document table. The reading unit, which reads the document sheet, includes a movement unit movable relative to the first and second document tables. At least one of positions of the first document table, the second document table, and a position where the document sheet is transported is set so as to cause an optical path length between the reading unit and the document sheet passing through the second document table to correspond to an optical path length between the reading unit and the document sheet supported by the first document table.
The communication device has: a first communication transceiver for transmitting and receiving communication with a first facsimile machine via an analogue link; a second communication transceiver for transmitting and receiving communication with a digital communication network via a digital link; a converter to convert an analogue signal to a digital signal; a memory adapted to store the telephone number of a second, remote, facsimile machine receiving a fax to be transmitted, and to store in memory a digital data file corresponding to the conversion of a fax in analogue form into a digital file by the converter; and an electronic controller having a first simulator simulating an analogue telephone network, a second simulator simulating the second facsimile machine ready to receive a fax, and a forwarding device to forward digital data via the digital communication network which contain the digital file corresponding to the fax.
In accordance with an example embodiment of the present invention, there is provided an apparatus for facilitating charging in cognitive radio systems. The apparatus is configured to receive a data structure comprising accounting information, to obtain price information relating to the accounting information and to derive charging information and to send the charging information to a network. In some embodiments the apparatus is further configured to derive a revenue distribution scheme.
Various technologies described herein pertain to retaining content of a conference call for accelerated replay. The content of the conference call can be recorded. Further, establishment of a connection of a participant to the conference call can be detected. For instance, the connection can be established with a computing device of the participant. Moreover, the establishment of the connection of the participant to the conference call can be detected subsequent to initiation of the recording of the content of the conference call. Responsive to detection of the establishment of the connection of the participant to the conference call, at least a portion of recorded content of the conference call can be transmitted to the computing device for playback at a playback speed that is greater than a speed at which the content is recorded.
Methods and apparatus to manage conference calls are described. An example method includes enabling, via a logic circuit, a first one of participants of a conference call to request an adjustment of a volume of a current speaker different than the first participant; and in response to a request from the first participant, adjusting, via the logic circuit, an amplification setting associated with the current speaker in a preference file associated with the first participant.
Embodiments of the present disclosure provide a method for interoperation between multiple conference systems. In the method, a first conference system sends a call request message, which includes conference authentication information of a second conference created by a second conference system, to a second conference system for authentication. After the authentication is passed, the first conference system joins the second conference as a participant, where a type of the participant is a conference.
An aural volume feedback system is implemented in a center having agents each situated at a work station in calling contact with a client. At the work station, a first microphone closer to the agent transforms aural speech thereof into an electrical format forwarded toward the client. A second microphone farther from the agent transforms aural speech thereof into an electrical format forwarded toward a volume detector which samples same and generates based thereon an instantaneous volume level. The volume detector compares the generated volume level to a predetermined threshold to determine that the agent is speaking excessively loudly, and outputs a trigger signal. A feedback generator receives the trigger signal, and generates a feedback to be perceived by the offending agent at the work station, where the perceived feedback hopefully causes the offending agent to reduce the aural volume thereof.
Methods, systems, and computer-readable media for providing universal access to caller-specific ringtones are described. A universal address book server is implemented that contains user-specific address books for users of a communications network. Each address book includes ringtones associated with contacts and groups defined in the address book. The universal address book server also provides a synchronization service to the communication devices of each user allowing the communication devices to synchronize the ringtones associated with the contacts and groups between the user's address book on the universal address book server and a local storage of the ringtones in the communication device.
Method and apparatus for effecting a voice communication between user terminals connected via a communication network include displaying a menu of country options to a user and receiving a number in local form. Formatting rules are recalled for a destination country selected by the user from the country options. A country prefix for the destination country is prepended to the number in accordance with the formatting rules to generate a formatted number. The formatted number is supplied to a client installed at the user terminal for effecting the voice communication using the formatted number.
Techniques may be provided for augmenting a call initiated by a first user device with functionality that enables the first user device to automatically interact with at least one other user device using one or more augmented services. In some examples, a service provider may receive information that identifies a connection between the first device and a second device. Additionally, an identifier of the first device may be received. Based at least in part on the identifier, the service provider may identify an augmented service capable of being implemented by the first device. Additionally, the service provider may enable implementation of the augmented service by the first device and the second device.
An apparatus for controlling a multimedia message in a user equipment of a wireless communication system and method thereof are disclosed. The present invention includes a touchscreen configured to display at least one first region corresponding to each message exchange unit and a second region for displaying an information of a content exchanged via the first region and a controller, if the information of the content displayed on the second region is selected, controlling the selected content information to be displayed on the at least one first region. In this case, the message exchange unit includes a group comprising at least two message exchange targets which are identified by at least one identification information.
A method of operating a digital assistant to provide emergency call functionality is provided. In some embodiments, the method is performed at a device including one or more processors and memory storing instructions for execution by the one or more processors. The method includes receiving a speech input from a user, determining whether the speech input expresses a user request for making an emergency call, and determining a local emergency dispatcher telephone number based on a geographic location of the device. The method also includes, in response to determining or obtaining a determination that the speech input expresses a user request for making an emergency call, calling the local emergency dispatcher telephone number using the emergency call functionality.
A headset base unit comprising a base housing, a first connection device, by means of which the headset base unit is connectable to at least one telecommunication device, such as a desk phone or a PC phone. Furthermore, the headset base unit comprises a second connection device, by means of which the headset base unit is connectable to a headset, and a device holder for holding a mobile communication device with a device user interface. The headset base comprises control means, by means of which an audio channel can be opened between the headset base unit and a selected one of the telecommunication devices. The headset base unit is adapted to receive control commands from the mobile communication device for controlling the selected telecommunication device connected to the first connection device, whereby a user can control the telecommunication device by means of the device user interface.
A mobile device having a camera is adapted to serve as an electro-optical reader for electro-optically reading targets. The device is received and held in a housing having a rear wall. A top extension extends away from the rear wall at a top region of the device. A fold mirror is mounted on the top extension and is spaced away from a camera lens of the device. The fold mirror is inclined relative the rear wall and is operative for receiving at least a portion of a field of view imaged by the camera from each target along a first direction, and for folding and redirecting the field of view along a second direction generally perpendicular to the rear wall through the camera lens to the camera. A handle having a trigger assembly may be connected to the housing.
A case for an electronic device includes a rigid layer and a resilient layer. The rigid layer includes a plurality of turned edges. The resilient layer is disposed primarily on a first side of the rigid layer, wherein the resilient layer includes a plurality of enveloping edges that substantially envelop the turned edges.
A method includes receiving, at or from a station STA, a plurality of packets. Each packet includes a set of flag bits, and a MAC header containing at least a first address field specifying a receiver address and a second address field specifying a transmitter address. The method also includes determining whether each set of flag bits indicates that the STA was associated with an AP when the respective packet was generated, and processing the MAC header of each packet. Processing the MAC header of each packet includes processing a third address field in each packet for which it is determined that the respective set of flag bits indicates that the STA was not associated with an AP when the respective packet was generated. The third address field contains a MAC address of the STA.
A client apparatus, a server, and a control method thereof are provided. The client apparatus includes a display, a user interface which receives a text input, a communication interface which transmits to the server information related to input text, a storage which receives a result of analysis of the information transmitted from the server and stores the same, and a controller which performs control operations so that, in response to the text input being received via the user interface after the result of the analysis received, the received text is converted based on a stored result of the analysis, before being displayed.
A technique for determining a data window size allows a set of predicted blocks to be transmitted along with requested blocks. A stream enabled application executing in a virtual execution environment may use the blocks when needed.
A server and/or a client stores a metadata hash map that includes one or more entries associated with keys for data records stored in a cache on a server, wherein the data records comprise a directed acyclic graph (DAG), and the directed acyclic graph is comprised of a collection of one or more nodes connected by one or more edges, each of the nodes representing one or more tasks ordered into a sequence, and each of the edges representing one or more constraints on the nodes connected by the edges. Each of the entries stores metadata for a corresponding data record, wherein the metadata comprises a server-side remote pointer that references the corresponding data record stored in the cache. A selected data record is accessed using a provided key by: (1) identifying potentially matching entries in the metadata hash map using the provided key; (2) accessing data records stored in the cache using the server-side remote pointers from the potentially matching entries; and (3) determining whether the accessed data records match the selected data record using the provided key.
According to one embodiment, a local proxy caches in a local stream store one or more streams of data transmitted over the WAN to a remote proxy. In response to a flow of data received from one of the clients of the local LAN, the local proxy chunks using a predetermined chunk algorithm the flow into chunks in sequence, and selectively indexes the chunks in a chunk index maintained by the local proxy based on locations of the chunks in the flow, where a number of chunks in a first region of the flow indexed is different than a number of chunks in a second region of the flow indexed. The chunk index includes multiple chunk index entries referenced to the streams stored in the stream store.
The current invention discloses methods and devices that provide controlled randomization of the progression of an application program on one or more terminals connected to a server. The server may feed a seed random number to the terminals and the seed random number may be used by a platform-independent random number generator to produce random numbers. The random numbers may be fed to platform-dependent random processing commands to generate display contents, which may be displayed by the terminals. With such implementations, the same program running at different times may have different processes and show different display contents. The current invention reduces predictability and improves randomness and excitability of the program.
A method and a system for controlling a flow of a content delivery network (CDN) and a peer to peer (P2P) network are provided. The method includes the following steps. Data is transmitted via the CDN and the P2P network. A sharing rate is obtained from the P2P network by a P2P network tracker module. A first service cost rate is calculated according to the sharing rate by a logical controlling module. The CDN is controlled to accept or reject one or more new requests from the P2P network according to the first service cost rate by the logical controlling module.
An allocated IP address is remapped from a first virtual machine to a second virtual machine while maintaining existing client connections on the first virtual machine. A communication channel is established between the first and second virtual machines, and existing connections associated with the IP address are tracked. Packets addressed to the IP address are forwarded to the second virtual machine instead of the first machine. If the second virtual machine receives a packet that contains a new connection request, the new connection is established with the second virtual machine. However, if the second virtual machine receives a packet that is associated with an existing connection to the first virtual machine, then the packet is forwarded to the first virtual machine via the communication channel.
Systems for transmitting an application message between nodes of a clustered data processing system are disclosed. One system includes a determination of whether one or more application messages may currently be transmitted to a first node of a plurality of nodes from a second node of the plurality of nodes. The system further includes processing the one or more application messages in response to a determination that the one or more application messages may be currently transmitted.
Systems, methods, and computer-readable media having computer-executable instructions embodied thereon that provide updates to localized software are provided. Resources are stored on a server device and may be cached or stored locally at a client device. Updates to the resources are made available at the server device. The updates include translations of the resources to several languages. The client device checks for an update of the resource and downloads the update for the server when the application is launched or downloaded by a computing device.
Timings of data traffic in a test system are modified by introducing dependencies that would arise in response to data requiring access to a resource comprising a buffer for storing pending data related to an access to the resource that cannot currently complete. A maximum value of a counter is set to a value corresponding to the buffer size. Data traffic is input, and the counter is updated in response to the data requiring the resource and being stored in the buffer and in response to the data traffic indicating a buffer entry has become available. Where the data requires the buffer and the counter is at its maximum value indicating the buffer is full, a timing of the data access requiring the buffer is modified indicating that the data is stalled until the buffer has capacity again, and the data traffic is updated with the modified timing.
The invention concerns a method of transmission of a digital content stream to receivers and a corresponding method of reception. In order to synchronize digital content rendering over these receivers, while supporting trick mode commands, the method of transmission comprises a step of sending of a common time reference to the receivers, a step of reception of a trick mode command message, the received trick mode command message comprising information allowing identification of a point in the digital content stream, a step of sending of notification messages to all of the at least two receivers notifying them of the received trick mode command message and a step of sending of at least part of the digital content stream to all receivers in accordance with the received trick mode command message, the digital content stream comprising information allowing to identify a point in the digital content stream.
A social networking site that communicates with a plurality of human users can also communicate with a plurality of non-human users. Information from one of the non-human users can be automatically received at the site and evaluated. Commands can be automatically transmitted to another of the non-human users in response to the evaluation. A human readable indicator can be posted at a page of the site.
A process of managing a digital photo involves capturing the photo using a digital camera; communicating the photo to a server system; the server system identifying faces of people in the photo; the server system matching the faces to the communication addresses of portable devices of the people; and the server system communicating the photo to the portable devices.
Described herein are methods and systems for interfacing heterogeneous endpoints and web-based media sources in a video conference. Interfacing heterogeneous endpoints can be challenging due to audio/video (A/V) streams being encoded in a format that is proprietary to a media provider of the A/V stream (e.g., format that is proprietary to Skype). To address such a challenge, a client application from the media provider may be installed at a virtual machine, and may be used to decode A/V streams that are encoded in a format proprietary to the media provider. Further, to display content from a web-based media source (e.g., YouTube) in a video conference, a browser may be installed at a virtual machine, and may be used to virtually render a media signal from the web-based media source, such virtually rendered media signal subsequently being captured and presented in a video conference.
The present invention, relating to the field of network communications, discloses a network conference method and apparatus. The method includes: receiving, by a local proxy server, a conference request for creating a conference from a user equipment, and requesting information of registered floor servers on a conference center server from the conference center server; detecting floor servers in the floor server information according to the floor server information, using a floor server complying with a first preset standard as a destination floor server, and sending the conference request to the destination floor server; and establishing a media channel between the local proxy server and the destination floor server, and a media channel between the local proxy server and the user equipment to enable the user equipment to carry out a network conference with the floor server by using the established media channels.
In a first embodiment, a specific UE is enabled to copy all or a portion of one or more or media in an ongoing session with a remote end to another UE, so that the media can be shared by many UEs. In a second embodiment, when a specific UE shares all or a portion of media in an ongoing session with another UE, the shared media may be controlled.
Technologies are generally described for a method for measuring a quality of an audio signal in a mobile device. In some examples, the mobile device includes a receiving unit configured to receive an audio signal transmitted from another device; an audio quality measuring unit configured to measure a quality of the received audio signal; and a transmission unit configured to transmit the measured quality of the audio signal to the another device.
Techniques for preventing unauthorized access to protected network resources include accessing, from a client appliance connected in a distributed network, a computing appliance through the world wide web, the computing appliance including a DNS server addressed by a particular domain name; receiving, from the computing appliance, a portion of code at the client appliance through a web browser of the client appliance, receiving, to a server appliance connected in the distributed network, a request to access secure content stored on the server appliance by the portion of code; comparing the domain name of the DNS server with a server-origin of the secure content; and based on the domain name of the DNS server being exclusive of a set of server-origin values that includes the server-origin, denying access to the request.
Methods and systems for detecting aberrant behavior in time-series observation data, such as non-existent domain data, are disclosed. The methods and systems analyze the time-series observation data to determine time-series prediction data. The time-series observation data and time-series prediction data are used to determine a threshold that is based on the standard deviation of deviation values between the time-series observation data and time-series prediction data. The threshold may be used to detect aberrant behavior in subsequently obtained time-series observation data.
Tools, strategies, and techniques are provided for evaluating the identities of different entities to protect individual consumers, business enterprises, and other organizations from identity theft and fraud. Risks associated with various entities can be analyzed and assessed based on analysis of social network data, professional network data, or other networking connections, among other data sources. In various embodiments, the risk assessment may include calculating an authenticity score based on the collected network data.
The system provides a method and apparatus for a parent or other custodian or guardian to monitor, filter, and approve of content to be accessed by a child or children on a network. In one embodiment, the system logs all activity on a network by a child and sends regular historical reports to the parent for review. The parent can set certain triggers that will provide more immediate feedback when certain events occur or when certain types of data are accessed, or an attempt is made by the child for such access. The system allows the parent to control the filters and options from a variety of sources, including via the child's computer, texting, instant messaging, cell phone, other web enabled computers, PDA's, etc.
Disclosed are systems and methods for ensuring confidentiality of information of a user of a service. One example method includes receiving a request to perform an operation for a service; selecting, based on a database of trusted devices, a trusted device for authorizing the operation of the service; establishing a secure connection with the trusted device; sending to the trusted device via the secure connection a request to enter confidential information on the trusted device to authorize the operation of the service; receiving the confidential information from the trusted device; and determining whether to authorize the operation of the service based on the confidential information.
A method for redacting QA system answer information based on user access to content including analyzing a corpus by natural language processing techniques, wherein the corpora includes non-sensitive and sensitive content, and storing the analyzed corpora in memory; receiving a user question to be answered by utilizing the analyzed corpora; utilizing a processor to determine a set of answer information by processing using the corpora; determining a user access right to sensitive content; and redacting an answer information item from the set of answer information if sensitive content to which the user does not have access was used to determine the answer information item.
In particular embodiments, a method includes receiving, by a computing device including an import/export framework, encoded client data. The client data may be encoded by a generic transcoding service. The method includes performing load-balancing based at least in part on the client data, authorizing the client's access of a remote application, and exporting the encoded client data to the remote application.
Detecting proxy-based communications via a computer network by sending a uniform resource locator via a computer network to a recipient at a first computer network address, identifying a request associated with the uniform resource locator, where the request is associated with a second computer network address, and determining that a value of a characteristic of the second computer network address is inconsistent with a value associated with the recipient, thereby identifying the first computer network address as being associated with a proxy.
A method of securing authentication of a user's identity is disclosed. The method comprises the steps of: an authentication program of an entity receiving initiation of a transaction from a user; the authentication program searching for associated information of the user; the authentication program choosing an authentication query requiring input from the user based on the associated information; the authentication program generating a visual code representing the authentication query; the authentication program splitting the visual code into pieces; and the authentication program sending each piece of visual code to the user via a separate communication channel. A method of securing authentication of a user's identity with an entity is also disclosed.
Embodiments are directed to managing secure communication between a plurality of node computers over a network. If overlay networks for node computers are provided for communicating between the node computers, a mesh network may be configured. If a node computer that may be associated with the overlay networks sends a communication to other node computers also associated with the overlay networks, a gateway computer associated with the node computer may perform actions to process the communication. The gateway computer may select an overlay network based on the node computer. Target gateway computers associated with the other node computers may be determined based on the overlay network and the mesh network. Physical paths from the gateway computer to the target gateway computers may be determined. The gateway computer may send the communication to the target gateway computers over the physical paths and then to the other node computers.
The present invention supports a communication protocol for transmission of information packets between a mobile node and a virtual private network. Information packets are encapsulated and decapsulated along the route as the information packet is forwarded among the various networks on its path to the destination address; either the mobile node on a foreign network or a correspondence node on a virtual private network. A home agent on the virtual private network supports transmitting the information packets, and the information packets are transmitted from the virtual private network from the home agent or a virtual private network gateway.
A cloud access manager obtains input regarding access control for at least one application deployed on a plurality of virtual machine instances in a cloud computing environment; the virtual machine instances are divided into at least first and second access zones. A cloud access manager registrar located in the cloud computing environment registers internet protocol addresses of external clients as seen from the cloud computing environment; at least some of the addresses are assigned to the clients via network address translation (NAT). Session traversal utility for NAT (STUN) is carried out to determine public internet protocol addresses assigned to the clients via NAT. The cloud access manager controls (i) access of the external clients to the plurality of virtual machine instances; and (ii) access of the plurality of virtual machine instances to each other, based on the registered internet protocol addresses, in accordance with the access zones.
An information processing system includes a request receiver to receive a terminal request including a plurality of apparatus identification information, transmitted from communication terminals, used for identifying each of the plurality of apparatuses; a request processor to accumulate the received terminal request into a request accumulation unit; a request transmitter, upon receiving an obtaining request for obtaining a terminal request from an apparatus identified by the apparatus identification information, to transmit the terminal request accumulated in the request accumulation unit to the apparatus; a result receiver to receive a process result for the terminal request from the apparatus; and a result transmitter to transmit the received process result to a communication terminal. The request processor transfers the terminal request from one request accumulation unit of one apparatus transmitting a process result to other request accumulation unit of other apparatus not transmitting a process result.
A domain name system (DNS) cache integrity check system is provided. The system comprises a checking server which comprises an application stored in a memory that, when executed by a processor, checks domain name to internet protocol (IP) address mappings amongst a plurality of DNS cache servers. The checking application consults a valid list data store and identifies a discrepant domain name to IP address mapping. The application requests for a mapping list from an authoritative DNS server. The checking application compares the discrepant mapping to the authoritative DNS server list, if the discrepant mapping is located on the authoritative DNS server list, the discrepant mapping is authorized and written to the valid list, if the discrepant mapping is not located on the authoritative DNS server list, the DNS cache server with the discrepant mapping is flushed and replaced with an authorized mapping from the authoritative DNS server list.
A method for separating the sharing of topics in social networking. The method includes receiving digital content, for example a web page, from a social network provider using a computer. The method receives data from the social network provider, for example, groups and lists. The method analyzes the topics displayed in the digital content to determine a category for the digital content, for example, work-related or entertainment. The digital content is assigned a category based on a match of the plurality of topics displayed in the digital content. The digital content for the shared topic is then selectively shared with the participants of the groups.
A method for reducing the delivery of undesirable electronic mail is disclosed. In one or more implementations, the method includes, in response to receiving a request to declare email bankruptcy of an email account, identifying emails based on one or more predetermined parameters and automatically moving the identified emails to a predetermined location, and sending a notification to one or more senders associated with the identified emails.
An internet service provider (ISP) is configured to analyze a subscriber's sent e-mail packets to determine a subscriber identity associated with the e-mail packets. A database is then queried to determine a current sending rate of e-mails by the subscriber. A sending rate above an allowed threshold causes the upstream transmission of the e-mail packets to be blocked by injecting connection destroying packets. A subscriber remains blocked from upstream transmission of e-mails until the sending rate as determined by the ISP drops below a second, more stringent threshold. This automatic process is also accompanied by automated messaging to the subscriber with information as to the measures taken and remedial options.
Methods and apparatus associate a computed trust level to avatars that interact with one another in a simulated environment. The avatars may represent legitimate users of the virtual world or spammers. System monitoring of each avatar provides ability to recognize potential spammers and create an alternate indication of the spammers. A user index may be used to store data describing attributes of each avatar for analysis using programs stored in memory.
A client service, such as a plug-in to a browser, can alter a document retrieved from a compatible service to augment the document with services from an online content management service. When an application retrieves a compatible document, the client service can detect a document element within the document and alter the document to provide an activatable reference to the online content management service. For example, a client service can recognize an email composition webpage or an email display webpage and insert activatable references provide services from the online content management service. In email composition webpages, a reference can be a button that allows an email author to insert a link to a content item from the online content management service. In email display webpages, references can be added that allow attachments to be sent to the online content management service for storage.
A method, computer program product, and system for identifying experts is described. An indication of a subject matter area associated with a user is received. A list of experts regarding the subject matter area is determined based upon, at least in part, identifying one or more members included in one or more contact rosters associated with the user. A set of experts, included in the list of experts, that are available for instant messaging communication, is identified. A portion of the list of experts is provided to the user in the context of an instant messaging application associated with the user.
In an example embodiment, a computer-implemented method is illustrated that includes receiving first data from a first local area network (LAN) prior to the first data being transmitted across a wide area network (WAN). Also received are second data from a second LAN prior to the second data being transmitted across the WAN. A first optimization operation is performed on the first data to optimize the first data for transmission over the WAN. Also, the first optimization operation is performed using a first operating system executing on the computer system in response to the first data being received from the first LAN. A second optimization operation is performed on the second data using a second operating system in response to the second data being received from the second LAN. The optimized first data and the optimized second data are transmitted across the WAN.
Roughly described, a network interface device for connection between a host data processing device and a network, comprising: a controller for supporting communication with a host data processing device over a data bus interface; and a packet capture unit between the controller and the network and comprising: a packet inspector configured to parse incoming data packets to identify data packets of a first data flow; a duplication engine to generate a duplicate data flow from the first data flow; and a packet capture engine to process said duplicate data flow into a packet capture data stream having a predefined format. The network interface device is configured to cause: the first data flow to be made available to a consumer process of a host data processing device to which the network interface device is connected; and the processed packet capture data stream to be stored at a packet capture buffer.
The present disclosure relates to a communication system which, in accordance with one exemplary embodiment, a communication network for providing network services to at least one network device and at least one distribution point (DP) coupled to at least one network backbone. The at least one network device is located remote from the DP and coupled to the at least one network backbone via the at least one DP. The at least one DP is configured to receive a plurality of data units from the at least one network backbone in accordance with one or more communication protocols. A plurality of data frames, each having a header portion and a payload portion, are generated and each one of the received data units are mapped into one or more payload portions of the plurality of data frames. One or more of the plurality of data frames are mapped to a payload portion of at least one data transfer unit (DTU), which is then communicated to the at least one network device. Furthermore, a corresponding method and an appropriate transceiver are described.
Embodiments relate to virtual networks. An aspect includes a method for controlling a virtual network including analyzing header content of packet traffic, where the packet traffic corresponds to one or more virtual machines run on a computer. The method includes performing flow routing of the packet traffic through a virtual network based on the analyzing overlay virtual network identifiers or virtual extensible local area network (VXLAN) identifiers in the header content.
Aspects of the disclosure provide method and apparatus for managing multicast traffic in a domain, such as a G.hn domain. A method includes storing, at a first node of a domain, a plurality of next nodes for transmitting messages in the domain, forwarding, from the first node to the plurality of next nodes, a probe message transmitted from a second node in response to a request from a third node to join a group to receive a multicast flow that enters the domain from the second node, and storing, at the first node, a list of nodes in association with the multicast flow. The list of nodes is determined at least in part based on a path through which the probe message is transmitted from the second node to the third node.
A distribution of a content selection being distributed throughout a wireless mesh network may be tracked. A wireless device in the wireless mesh network enables the content selection to be exchanged. Wireless devices then exchange the content, and a network topology is recorded in response. Finally, the network topology is reported to a reporting agent.
The present invention provides a message processing method of a gateway, which can improve the reliability of a routing operation of the gateway by changing the moment of message transmission. The message processing method of the gateway includes steps of (a) calculating a time difference between the transmission time of a message transmitted to the gateway and the transmission time of a message routed and transmitted from the gateway, and (b) comparing the transmission period of the message transmitted to the gateway and the transmission period of the message routed and transmitted from the gateway, when the time difference is less than a target value. (c) A message transmission timing offset is calculated according to the compared result between the transmission periods of the messages, and (d) the transmission time of the message transmitted to the gateway is changed and corrected using the message transmission timing offset.
Embodiments are directed to monitoring communication over a network using a network monitoring device (NMD). Measurement information may be generated based on network traffic that may be monitored by the NMD. Metrics associated with one or more characteristics of the monitored network traffic may be generated based on the measurement information. Layout information for a user-interface may be generated based on results of heuristics that use the measurement information. Generating the layout information may include, determining a layout template based on the results of the heuristics and the measurement information. Metric visualizations that may be associated with the metrics may be displayed in the user-interface based on the layout information. If measurements exceed defined threshold values, the layout information may be modified based on the changes to the measurement information. Accordingly, the layout of the user interface may be modified based on the modified layout information.
A method for scaling a cloud infrastructure, comprises receiving at least one of resource-level metrics and application-level metrics, estimating parameters of at least one application based on the received metrics, automatically and dynamically determining directives for scaling application deployment based on the estimated parameters, and providing the directives to a cloud service provider to execute the scaling.
An apparatus for calculating the effect of an action on a network includes a mapping module that creates a mapping of a plurality of devices of a networked computing environment. The mapping describes a relationship between a primary device and at least one device of the plurality of devices. The apparatus includes an action module that determines a plurality of potential actions to be performed on the primary device. The apparatus includes a calculation module that calculates an effect of a potential action of the plurality of potential actions on the plurality of devices in response to simulating performing the potential action on the primary device. The apparatus includes an optimization module that performs an optimization action in response to calculating the effect of the potential action. The optimization action maximizes availability of the networked computing environment.
Network computing management is implemented by determining a location of a requestor requesting access to an instance configured at a data center, retrieving a list of data centers configured for a network computing environment, and evaluating aspects of the data centers in the list in view of the location of the requestor. The network computing management is further implemented by selecting a data center from the list that satisfies a threshold level of criteria and which threshold level exceeds a level ascertained for remaining data centers in the list. In response to determining the data center selected is different from the data center through which the instance is configured, the network computing management relocates the instance to the selected data center.
The present disclosure relates to systems and methods for providing bandwidth-on-demand telecommunications services over next-generation optical transport networks (NG-OTN). One embodiment of a system providing bandwidth-on-demand services includes a next-generation optical transport network (NG-OTN) having an intelligent control plane (ICP) and new-generation synchronous optical network (NG-SONET) capabilities. A next-generation operation support subsystem (NG-OSS) is communicatively coupled to the NG-OTN. The NG-OTN and the NG-OSS are configured to provide the bandwidth-on-demand services.
Embodiments of the present invention provide an approach for providing cluster-aware (storage) resource provisioning in a networked computing environment (e.g., a cloud computing environment) based upon policies, best practices, and/or storage cluster/environment configurations. In a typical embodiment, a set of characteristics (e.g., computing resources/components, etc.) of a storage environment will be determined. A set of requirements for a set of workloads to be processed by the components of the storage environment will then be identified. A set of policies and a set of best practices will then be determined to identify a configuration of the storage environment to optimize the processing of the set of workloads according to the set of requirements. Based on the configuration, a plan will be generated that indicates a data path through the set of computing resources that minimizes a potential for error in processing the set of workloads.
The present invention provides a node routing method of a multi-processor system, a controller and a multi-processor system. The method includes learning a state of an available link between nodes in the multi-processor system, where the multi-processor system includes a first subnet and the first subnet includes at least two connected nodes, and when at least one link in the first subnet fails, reselecting an available link between all nodes in the first subnet, so that the nodes in the first subnet use the reselected available link to route a packet, where the reselected available link is a link on each node in the first subnet except a link whose dimension sequence number is the same as that of the failed link, a dimension sequence number is numbers of a link at two end nodes, and numbers of a link at two end nodes are the same.
A transmission system is provided with a pulse sequence generator that generates a pulse sequence including Golay code or Spano code, a π/2-BPSK modulator that applies π/2-BPSK modulation to the pulse sequence generated by the pulse sequence generator, and a phase rotator that provides phase rotation for every pulse for output of the π/2-BPSK modulator and a reception system is provided with a phase rotator that provides a phase opposite to a phase provided by the phase rotator of the transmission system and a correlator that performs correlation calculation for output of the phase rotator, based on the output of the π/2-BPSK modulator.
Provided is a signal transmission device including a first modulation unit generating a first modulated signal having at least three logic levels by modulating an input signal; a characteristic adjustment unit generating an adjusted first modulated signal by adjusting the at least one of electrical characteristic values based on an adjustment signal; a second modulation unit generating a second modulated signal by modulating the adjusted first modulated signal; and an adjustment operation unit generating the adjustment signal based on electrical characteristic values respectively corresponding to the at least three logic levels of the first modulated signal and corresponding to at least three logic levels of the second modulated signal. Linearity of the modulated signal generated by the provided signal transmission device is enhanced.
A millimeter wave radio transceiver having all or substantially all of its components fabricated on a single chip or chipset of a small number of semiconductor chips. The chip or chipsets when mass produced is expected to make the price of millimeter wave radios comparable to many of the lower-priced microwave radios available today from low-cost foreign suppliers. Transceivers of the present invention operate in the range of about 1 Gbps to more than 10 Gbps. The transceiver of a preferred embodiment is designed to receive binary input data at an input data rate in 10.3125 Gbps and to transmit at a transmit data rate in of 10.3125 Gbps utilizing encoded three-bit data symbols on a millimeter carrier wave at a millimeter wave nominal carrier frequency in excess of 70 GHz.
A local oscillation generator includes an oscillation circuit, a frequency multiplication circuit, a mixer, and a frequency divider. The oscillation circuit provides a fundamental oscillation signal. The frequency multiplication circuit provides a first oscillation signal according to the fundamental oscillation signal. The mixer provides a mixed oscillation signal according to mixing of the fundamental oscillation signal and the first oscillation signal. The frequency divider frequency divides the mixed oscillation signal so that the local oscillation generator accordingly provides a local oscillation signal.
A method and system of transmitting data via a computer network to a plurality of end-users. Transmission of successive data units may be prompted by human-operated and/or automated central control. Successive arrays of data units may be transmitted over a plurality of channels, in parallel. Each end-user chooses which channel or channels to receive and may change channels at will. Transmission of successive arrays may coincide with successive occurrences during the course of a live event. Data units also may be transmitted over one or more channels asynchronously with transmissions over other channels. Controller-prompted transmissions, received passively by end-users, also may be integrated with a facility for end-users to browse data sources in a self-directed sequence and pace.
A method and system are provided for determining modulation control information and a reference signal design to be used by a transmitter node when generating a transmit signal to transmit from a transmitter (logical antenna) of the transmitter node over a channel of a wireless link to a recipient node. The modulation control information is used by the transmitter node to convert source data into an information bearing signal, and the information bearing signal is combined with a reference signal conforming to the reference signal design in order to produce the transmit signal. The method comprises (a) selecting a candidate reference signal design from a plurality of candidate reference signal designs, (b) determining channel state information for the channel, (c) determining, from the channel state information, signal to noise ratio information for said channel, and (d) for each of a plurality of candidate modulation control information, using the signal to noise ratio information to determine a quality indication for said channel. Steps (a) to (d) are then repeated for each candidate reference signal design in said plurality. Thereafter a winning quality indication is selected from the determined quality indications, and the combination of candidate reference signal design and candidate modulation control information associated with the winning quality indication is then output to the transmitting node. By such an approach, quality indications can be established for each combination of possible reference signal design and possible modulation control information, and hence not only is the inherent channel estimation accuracy achievable using each possible reference signal design considered, but also the data transmission efficiency and robustness to channel effects of each possible modulation control information is also taken into account.
Systems and methods can be operable to provide subscription service level based channel assignment for network devices. In some implementations, such systems and methods can operate to create service flow list for use in assigning channels to CPE devices (e.g., modems, eMTAs, STBs, etc.). Such systems and methods can assist in assigning CPE devices to channels that correspond to their subscribed service level, thereby facilitating delivery of the proper level of service.
To re-establish a direct tunnel between an access node and a gateway router in a wireless network, a control node that provides mobility management on behalf of mobile stations detects restart of the gateway router. In response to detecting restart of the gateway router, the control node sends context information regarding a previously established direct tunnel to the gateway router to enable the gateway router to re-establish the direct tunnel.
A method and system manage a plurality of servers coupled to a network. Each of the servers is identified by a server name. At least one of the servers is identified by an old server name. The method notifies at least some of the plurality of servers that at a specified time the old server name will be changed to a new server name.
The presently described apparatus and method extends the capabilities of an Insteon network of devices. The method includes transmitting a group command message from a first device to a selected group of devices having a common group number, and receiving the group command message by a second device of the group or receiving a clean-up message transmitted by the first device, and resetting the state of the second one of the devices, and transmitting an acknowledgement message to the first devices from the second device, and receiving the first acknowledgement message by a third one of the devices that had not received the group command message or a clean-up message previously, and restoring the state of the third one of the devices.
A method begins by a processing module sending a transaction verification request to the set of dispersed storage (DS) units, wherein the transaction verification request includes a transaction number that corresponds to a particular dispersed storage network (DSN) access request. The method continues with the processing module receiving transaction verification responses from at least some of the set of DS units to produce received transaction verification responses. The method continues with the processing module identifying an undesired condition with processing the DSN access request and initiating a corrective remedy for the undesired condition when a DS unit of the set of DS units does not provide a desired transaction verification response.
One embodiment of the present disclosure provides a method that includes accessing, by a mobile device management system, a profile for a mobile device. The method also includes negotiating, by the mobile device management system, with a certificate authority to obtain a certificate for the mobile device. The negotiating with the certificate authority includes imitating the mobile device based on the profile. The negotiating with the certificate authority also includes, based at least on the imitation, transmitting one or more certificate enrollment messages to the certificate authority. The negotiating with the certificate authority further includes, based on the one or more messages, receiving, at the mobile device management system, the certificate for the mobile device. The method further includes transmitting the certificate to a control agent hosted on the mobile device for installation.
e and n are public information and d is private information. An electronic signature is generated based on a calculated value of e×d mod n. A signature generation apparatus includes a random number generation unit, a first calculation unit, a second calculation unit, and a signature generation unit. The random number generation unit generates a random number r. The first calculation unit calculates s1=r×n. The second calculation unit calculates s2=s1+e. The signature generation unit calculates s3=s2×d mod n and outputs s3 as the calculated value of e×d mod n. The signature generation apparatus can thereby generate the above electronic signature securely against differential power attacks.
Methods and systems are provided for efficient and secure “Machine-to-Machine” (M2M) between modules and servers. The module and server can utilize public key infrastructure (PKI) such as public keys to encrypt messages. The module and server can use private keys to generate digital signatures for datagrams sent and decrypt messages received. The module can internally derive pairs of private/public keys using cryptographic algorithms and a set of cryptographic parameters. The module can authenticate the submission of derived public keys. The module and server can mutually derive shared secret keys using the PKI keys. Data can be encrypted and decrypted using a set of cryptographic algorithms, the secret shared keys, and the set of cryptographic parameters. A module can send and receive sets of cryptographic parameters in order to flexibly and securely communicate with a variety of servers over time.
Systems and methods are provided for enchancing pseudo random number generation to thwart various security attacks to a system that relies on digital signature security measures. For example, a random number may be bound to a message that is to be signed using a digital signature. Alternatively, a random number may be bound to a secret seed value, which may be updated subsequent to each signing. Alternatively still, a random number may be bound to both the message to be signed using a digital signature and a secret seed value.
Scheduling of transmission opportunities to prevent collisions is contemplated. The transmission opportunities may be scheduled for terminal units where transmissions of one terminal unit may collide or otherwise interfere with transmissions of another terminal unit. The transmission opportunities may be scheduled according to a time-frequency grid to prevent collisions in a time domain and/or a frequency domain.
Provided are a communication method for a cooperative multi-point and a wireless device using the same. The wireless device receives, from a first cooperative multi-point (CoMP) cell, a first physical downlink shared channel (PDSCH) in a first subframe of a first frequency band, and receives, from a second CoMP cell, a second PDSCH in a second subframe of a second frequency band. A portion or the entire first frequency band is overlapped with the second frequency band. A first start point at which the first PDSCH in said first subframe starts being scheduled is the same as a second start point at which the second PDSCH in said second subframe starts being scheduled.
Methods and apparatus for distributing content using a spectrum generation device. In one embodiment, digital content is received via a time-multiplexed network transport (such as Gigabit Ethernet), and converted to frequency channels suitable for transmission over a content distribution (e.g., Hybrid Fiber Coaxial (HFC)) network. In one variant, the conversion is performed using digital domain processing performed by a full spectrum generation device. Additionally, methods and apparatus for selectively adding, removing, and/or changing digital content from the full spectrum device are also disclosed. Various aspects of the present invention enable physical (infrastructure) consolidation, and software-implemented remote management of content distribution.
A transmission module is provided that includes a transmitter, a loopback receiver, and a QEC controller. In a first state, the QEC controller calibrates the loopback receiver to remove quadrature imbalance in the loopback receiver. In a second state, a communication pathway is provided between the transmitter and the loopback receiver, and the QEC controller identifies quadrature imbalance in the transmitter based at least one a comparison of the data signals at the output of the loopback receiver with data signals at the input of the transmitter. Based on the comparison, the QEC controller can adjust one or more characteristics of the transmitter to correct quadrature errors in the transmitter.
A receptor of wireless signal in a wireless communication system can be configured to correct for degradations of signal quality. The reception apparatus can include a filter which is configured to create a filtered signal by make corrections to a reception signal which carries a symbol. Based on the created filtered signal, a symbol can be decided and weighted to evaluate the error of the original reception signal. Using the weighting information, a parameter of the filter can be updated to more accurately correct the reception signal.
A device and vehicle for use in, and system for, a vehicle-to-vehicle (V2V) communication and safety system that uses TDMA communication architecture with a self-synchronized TDMA time base. The time base starts with a GPS and internal clock, then fine-tunes by averaging the time bases of all vehicles within radio range. In the described algorithms, all vehicles within a communication range rapidly converge on a common time base to high precision. The regularly broadcast safety messages themselves are used for time base synchronizing, eliminating the need for separate time stamps or transmissions. A range group of vehicles, first converges itself, then converges the group on a UTC time via GPS. Embodiments include use of vehicle distances in time computations. Applications anti-collision systems, optimized traffic flow and signal timing.
The method for detecting and managing a synchronization failure of a transparent clock is used in a packet network in order to determine and correct residence time of time-stamped packets within a traversed element of said network. The transparent clock is part of a Master/Slave synchronization path including a plurality of network elements and their associated transparent clocks. The method includes transmitting time-stamped packets from the Master to the Slave through different synchronization paths in order to have the Slave receiving multiple time signals transmitted through different paths, and determining a failure within a transparent clock of a failed/failing synchronization path if the time signal provided by said failed/failing path differs from the time signal provided by the other transmitting path(s).
Systems and methods and systems are disclosed for allowing the medium access control (MAC) layer in a communication system within an integrated circuit or device to accurately determine a timestamp point and a timestamp value when, for example, the Precision Time Protocol (PTP) protocol is in use by the communication system. Such determination of accurate timestamp point and timestamp value may be used by the communication system to account for and to compensate for the time shift(s) from forward error correction (FEC) sublayer changes in a data frame that is transmitted by the MAC layer. Feedback is provided to the MAC from the FEC to allow the MAC to accurately determine the timestamp point and timestamp value align preamble of the data frame to the beginning of the FEC bit block that is output by the FEC sublayer.
Systems and methods are provided for a low frequency AC comparison circuit. The low frequency AC comparison circuit includes circuitry configured to receive a monitoring signal generated by an optical detector, the monitoring signal being proportional to an amount of light generated by an optical transmission device that transmits based on a data signal that is received by an optical driver. The comparison circuit is further configured to generate a modulation current control signal that is transmitted to the optical driver based on a comparison of a low frequency AC component of the monitoring signal and a correlated low frequency AC component of the data signal.
A network device includes a plurality of physical-media entities (PMEs), each corresponding to a distinct channel, to generate transmit signals based on transmit packets received over a media-independent interface. The network device also includes a channel-bonding sublayer to direct the transmit packets from the media-independent interface to respective PMEs of the plurality of PMEs. The channel-bonding sublayer has a substantially fixed delay between the media-independent interface and the plurality of PMEs for the transmit packets.
The present invention provides an updating apparatus and method for an equalizer coefficient, receiver and optical communication system. The updating method comprises: receiving an optical signal transmitted by a transmitter in an optical communication system, the optical signal comprising transmission data and a constant modulus signal for updating a coefficient of an equalization filter; performing coherent detection and analog-to-digital conversion on the optical signal, so as to obtain a digital electric signal; and updating the coefficient of the equalization filter at a symbol corresponding to the constant modulus signal in the digital electric signal. With the embodiments of the present invention, not only the coefficients of the equalizer may be optimized, but also being adapted to signals in various modulation formats, and the complexity of the channel equalization may be lowered as well.
An example apparatus comprises an optical transmitter which includes a first processor and at least two optical modulators. The first processor is configured to generate a first electronic representation for each of at least two optical signals for carrying payload data modulated according to a one-dimensional (1-D) modulation format, and to induce on respective ones of the first electronic representations an amount of dispersion that depends on a power-weighted accumulated dispersion (ADPW) of a transmission link through which the at least two optical signals are to be transmitted thereby generating complex-valued electronic representations of pre-dispersion-compensated optical signals. Each of the at least two optical modulators modulate a respective analog version corresponding to a respective one of the complex-valued electronic representations onto a polarization of an optical carrier.
An amplifier receives an optical signal including a number of labeled channels via a fiber. The amplifier determines a count of the labeled channels and a spectral distribution of the labeled channels. The amplifier adjusts a parameter of the amplifier based on the count of the labeled channels and the spectral distribution of the labeled channels. The amplifier amplifies the optical signal at an adjusted output gain resulting from adjusting the parameter of the amplifier.
One or more embodiments provides a precoder selection method for performing hybrid beamforming in a wireless communication system. The method includes selecting a predetermined number of candidate transmit beams using a signal strength received through each of first combinations with receive beams that can be mapped to each transmit beam of each of transmit antennas mounted on a transmitter. The method also includes selecting a precoder using signal strength received through each of second combinations with receive beams that can be mapped to each of the candidate transmit beams.
Transmission quality is improved in an environment in which direct waves dominate in a transmission method for transmitting a plurality of modulated signals from a plurality of antennas at the same time. All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
A near field communications (NFC) device is disclosed that intelligently routes NFC data from a NFC device between multiple user interfaces based upon a power level of its internal batteries. The communications device utilizes a communications device user interface to send and/or receive the NFC data from the NFC device when its internal batteries are sufficient to operate the communications device user interface. The communications device begins to route some of this NFC data from being sent and/or received by the communications device user interface to a NFC user interface as its internal batteries deplete. Eventually, all of the NFC data will be sent to and/or received by the NFC user interface as the internal batteries of the communications device become so depleted that they are unable to reliably operate the communications device user interface.
A method significantly reduces the average power for radio communication in a communication system, such as a system that has applications requiring low communication latency. The method may use a low power radio communication circuit (e.g., a non-heterodyne receiver) to wait for a communication request, taking advantage of the low power consumption of the radio communication circuit. Subsequent to receiving and validating the communication request, the communication system may switch to a more efficient—but higher power—communication circuit. Thus, effective communication is achieved without making undesirable tradeoffs, such as reduced sensitivity.
An apparatus that facilitates one-handed use of a mobile device has a finger brace configured to brace a user's finger on each of two opposed sides of the point where it is coupled to a flexible member. The flexible member extends through a hole in the back portion of the mobile device's case and is anchored to an interior surface of the back portion of the case. The flexible member's length is such that two fingers of the user's hand can press against the finger brace to brace the mobile device when the two fingers are between the finger brace and the case.
A subscriber identity module card compatible apparatus and a terminal device, including: a base; a first card slot for a first SIM card to be inserted into, a second card slot for a second SIM card to be inserted into, and a stopper used for preventing the second SIM card from being inserted into the second card slot after the first SIM card is inserted into the first card slot or preventing the first SIM card from being inserted into the first card slot after the second SIM card is inserted into the second card slot; all of the first card slot, the second card slot and the stopper are arranged on the base, and the stopper is arranged between the first card slot and the second card slot.
A device includes, a reconfigurable baseband filter configured to receive a communication signal having a first carrier and a second carrier, the first carrier and the second carrier having non-contiguous respective frequencies, the reconfigurable baseband filter having a first filter portion and a second filter portion, the first filter portion and the second filter portion each comprising respective first and second amplification stages, and a plurality of switches associated with the first filter portion and the second filter portion, the plurality of switches for configuring the reconfigurable baseband filter into a plurality of sub-filters, each configured to generate at least one of a low pass filter output and a bandpass filter output.
A transmitter for generating a differential signal pair including a pre-emphasis component. In an embodiment, the transmitter comprises pre-driver circuitry including an input to receive a single-ended data signal. The differential transmitter further comprises a load circuit coupled between the input and a node coupled to an output of the pre-driver circuitry which corresponds to a constituent signal of the differential signal pair. In another embodiment, the load circuit is configurable to provide a signal path between the input and the node. A configuration of the load circuit allows for a type of pre-emphasis to be included in the constituent signal.
A pair of adjacent characters in a plain ASCII data stream is examined for a condition that the pair contains a consonant followed by one of a set of characters, or a vowel followed by one of the set of characters. The set of characters is selected only from vowels and the space character. If the condition is satisfied, the pair is encoded as a corresponding extended ASCII code. If the condition is not satisfied, the first character of the pair is emitted as a corresponding plain ASCII code, and a next pair is formed with the second character of the (previous) pair as the first character and a next character of the plain ASCII stream as the second character. The next pair as well as further pairs are examined for the condition and correspondingly processed. Compression of the plain ASCII data stream is thereby achieved.
A Segmented Voltage Continuous-Time Digital-to-Analog Converter is disclosed which provides the benefits of segmentation while minimizing the associated disadvantages. The segmented digital to analog converter disclosed here features, in particular, inherent monotonicity and low transition glitches. The segmentation technique is based on coupling an array of switchable current sources and at least one current divider into a resistor string, providing, at least, three levels of segmentation.
A programmable, quantization error spectral shaping, alias-free asynchronous analog-to-digital converter (ADC) is provided. The ADC can be used for clock-less, continuous-time digital signal processing in receivers with modest Signal to Noise-plus-Distortion Ratio (SNDR) requirements and a tight power budget.
An arrangement for reading out an analog voltage signal includes a voltage signal input for applying the analog voltage signal thereto, a reference unit configured to generate an analog reference voltage, and a converting unit configured to convert an analog input signal into a digital output signal. To enable online self-calibration of the arrangement, the arrangement includes a superposition unit configured to receive the analog voltage signal and the analog reference voltage. The superposition unit includes a modulation unit configured to generate a modulated reference voltage from the analog reference voltage. The superposition unit is configured to generate a combined analog signal by superimposing the modulated reference voltage onto the analog voltage signal, and to forward the combined analog signal to the converting unit.
A dynamic element matching method for a multi-unit-element digital-to-analog converter having unit elements comprises several steps. An element selection probability is determined as a function of a number of the unit elements and a digital signal. Next, loop filter output signals are generated as a function of the determined element selection probability and control signals for the unit elements. Certain ones of the unit elements are selected as a function of the generated loop filter output signals. The selected certain ones of the unit elements are activated for output of the converter.
An automatic tester, comprising a first signal converter, a first signal path, and a second signal path. The first signal converter is operable to convert, using a conversion clock signal, a signal from a digital signal domain to an analog signal domain to acquire an analog stimulus signal. The first signal path is operable to forward the analog stimulus signal from the first signal converter to a second signal converter operable to convert the analog stimulus signal back from the analog signal domain to the digital signal domain. The second signal path is operable to forward one of the conversion clock signal and a signal derived thereof from the first signal converter to the second signal converter. A difference between a propagation delay of an analog stimulus signal in response to a clock cycle of the conversion clock signal via the first signal path and a propagation delay of the conversion clock signal of the clock cycle via the second signal path is within a predetermined tolerance range.
A level shifting circuit that includes a level shifter and a circuit stage. The circuit stage includes a pair of diodes circuits. The circuit stage includes a first output node and a second output node. The first output node is coupled via a current path to a first output of the level shifter and the second output node is coupled to via a current path to a second output of the level shifter. One of the diodes is coupled to the first output node and a power supply terminal. The other diode is coupled to the second output node and the power supply terminal.
Various systems and methods are provided for integrated circuit clocking. In one embodiment, an integrated circuit system includes a plurality of combinational logic groups, each combinational logic group having a propagation time; and means for delaying a synchronizing clock signal supplied to at least one of the plurality of combinational logic groups based upon a period of the synchronizing clock signal and the propagation time of the at least one combinational logic group. In another embodiment, a method includes delaying a clock signal to produce a delayed clock signal and communicating the clock signal and the delayed clock signal to separate groups of the combinational logic circuit during a clock cycle that results in a reduction in power consumption by the combinational logic circuit.
A circuit for a ternary Domino reversible counting unit. The circuit includes a ternary adiabatic Domino D flip-flop, a ternary adiabatic Domino positive and negative circulation port, and a ternary adiabatic Domino T-operation circuit. The ternary adiabatic Domino T-operation circuit includes a first signal input end, a second signal input end, and a third signal input end, a selection signal input end, a signal output end, a first clock signal input end, and a second clock signal input end. The positive and negative circulation port includes a signal input end, a borrow terminal, a carry terminal, a first output end, a second output end, a first clock signal input end, a second clock signal input end, and a third clock signal input end. The D flip-flop includes a signal input end, a reset terminal, a set terminal, a reverse-phase set terminal, a signal output end.
A charge pump circuit includes a delay circuit, a transistor, and a capacitor. The charge pump receives an input signal and outputs an output signal. The delay circuit receives a first signal based on the input signal and outputs a first delayed signal. The transistor includes a gate, a first channel node, and a second channel node. The first channel node receives the first signal. The second channel node is connected to the output and to a first plate of the capacitor. A second plate of the capacitor receives a second signal based on the first delayed signal. The charge pump circuit is adapted to operate such that the voltage range of the output signal is greater than the voltage range of the input signal.
A semiconductor device includes a first pad suitable for receiving a first clock that is inputted from an exterior, a second pad suitable for receiving a second clock that is inputted from the exterior, a differential clock recognition unit suitable for recognizing between the first clock and the second clock as a positive clock of differential clocks and recognizing the other as a negative clock of the differential clocks in response to a mirror function signal which represents whether a mirror function is enabled or not, an output unit suitable for outputting an internal signal as an output signal in response to the differential clocks and controlling an output moment of the output signal in response to the mirror function signal and an output moment control signal, and a third pad suitable for supplying the output signal to the exterior.
A high voltage circuit is provided for electrical pulse generation. The circuit includes an input voltage supply, a ground potential, a difference load, inverting and non-inverting Marx bank circuits connected respectively to output voltage nodes. The voltage supply has positive and negative terminals, with ground connecting to the voltage supply at the negative terminal. The output voltage nodes connect to the load. The inverting Marx bank circuit has a first n-plurality of stages in parallel, connecting at a first stage to the positive terminal and at a last stage at the inverting output node. The non-inverting Marx bank circuit has a second plurality of stages in parallel, connecting at a first stage to the positive terminal and at a last stage at the non-inverting output node. The load combines the inverting output voltage of minus n-times the input voltage with the non-inverting output voltage of plus n-times the input voltage for a total of 2n-times the input voltage.
A method and apparatus for reducing jitter in a ring oscillator are described. In one embodiment, the apparatus comprises a first power supply node to provide power supply current; a ring oscillator, coupled to the first power supply node, to generate an oscillating output according to change in the power supply current provided to the ring oscillator; and a second power supply node; a circuit, coupled to the second power supply node, to replicate time-average (e.g., DC) behavior of the ring oscillator; and a feedback mechanism having inputs coupled to the first and second power supply nodes, and an output to control current in the circuit.
An oscillation control circuit for a ring oscillator includes a bandgap reference circuit and an oscillation frequency control circuit. The bandgap reference circuit is arranged for generating a bandgap reference signal by mirroring a proportional-to-absolute-temperature current. The oscillation frequency control circuit is coupled to the bandgap reference circuit, and is arranged for biasing the ring oscillator according to the bandgap reference signal. When the ring oscillator has a plurality of stages, the oscillation frequency control circuit includes one current source and a plurality of current mirrors for biasing the plurality of stages of the ring oscillator, respectively.
Tunable filter structures, methods of manufacture and design structures are disclosed. The method of forming a filter structure includes forming a piezoelectric resonance filter over a cavity structure. The forming of the piezoelectric resonance filter includes: forming an upper electrode on one side of a piezoelectric material; and forming a lower electrode on an opposing side of the piezoelectric material. The method further includes forming a micro-electro-mechanical structure (MEMS) cantilever beam at a location in which, upon actuation, makes contact with the piezoelectric resonance filter.
An impedance matching device includes an input port connected to a high-frequency power supply, an output port connected to a load, an impedance variable circuit, a T-parameter memory for storing sets of T-parameters in a manner such that each of the sets of T-parameters is related to a corresponding one of adjustable impedance values of the device, an input voltage detector for detecting a forward wave voltage and a reflected wave voltage at the input port, and a p-p value calculator for computation of a p-p value of a high-frequency voltage at the output port. The computation of the p-p value of the high-frequency voltage is performed by using the forward wave voltage and the reflected wave voltage detected at the input port and also using one set of the T-parameters stored in the T-parameter memory.
An RF device includes a substrate and a series circuit of a tunable RF component and a DC blocking capacitor. The series circuit is arranged on the substrate and couples an RF signal terminal to a fixed voltage terminal that is electrically isolated from the RF signal terminal. The tunable RF component is coupled to the RF signal terminal, the DC blocking capacitor is coupled to the fixed voltage terminal and a driver terminal is coupled to the tunable RF component.
A novel audio ducking method that is aware of the loudness levels of the audio content is provided. The method specifies a minimum loudness separation between audio tracks that are designated as masters and audio tracks that are designated as slaves. The method attenuates the volume of the slave tracks in order to provide at least the minimum loudness separation between the slave tracks and the master tracks. The amount of attenuation for a slave is determined based on the loudness levels of the slave and of a master.
A wireless communication device that includes a power amplifier and an antenna is provided. The power amplifier includes a first and a second power amplifying paths, a first and a second selection circuits, first matching circuits and second matching circuits. The first and the second power amplifying paths receive a first and a second input signals respectively. The first selection circuit selects one of the first matching circuits according to a frequency band of the first input signal to perform a first matching process to generate a first output signal. The second selection circuit selects one of the second matching circuits according to a frequency band of the second input signal to perform a second matching process to generate a second output signal. The antenna is coupled to the power amplifier to transmit the first and/or the second output signals.
A receiver includes LNA-mixer arrangement, a current buffer arrangement and an analog filter arrangement. The LNA-mixer arrangement receives a plurality of input signals and provides a wide-band input match for a specified frequency range of operation. The LNA-mixer arrangement includes a plurality of LNA structures and a plurality of mixer structures where each of the LNA structure path is coupled to a single mixer structure. The LNA-mixer arrangement outputs a first signal. The current buffer arrangement receives the first signal and reduces the Image Rejection (IR) asymmetry between the high frequency portion and the low frequency portion of the first signal as well as provides a gain to the first signal. The current buffer arrangement outputs a second signal. The analog filter arrangement receives the second signals and perform filtering and calibration.
An audio enhancement technique comprises an audio source. The audio source is split into at least two branches and each of the branches is processed by a filter bank. Outputs from the filer banks are summed up to create a summed output signal. The summed output signal is splitting into two or more segments to create a split summed output signal. The split summed output signal is processed by one or more audio processing modules. Audio processed by each of the audio processing modules is summed to create a summed audio processed signal. The summed audio processed signal is provided to a balance module to select a balance mix of the audio source and the summed audio processed signal to create a balanced mixed audio signal. The balanced mixed audio signal is fed to a stereo output gain module for gain adjustment to create a gain adjusted stereo signal. The phase of the gain adjusted stereo signal is optionally changed in an amount between zero and 180 degrees to create a final output signal, which is sent to a playback device selected by user.
A method and device for driving a digital speaker based on code conversion are provided in the invention. The method comprises the steps of: (1) converting input format; (2) performing multi-bit Σ-Δ modulation; (3) thermometer code conversion; (4) dynamic mismatch-shaping processing; (5) pulse width modulation code conversion; and (6) controlling on/off status switching of the MOSFET of a full-bridge power amplification network to drive a digital speaker load sound. The device comprises a sound source, an input format converter, a multi-bit Σ-Δ modulator, a thermometer coder, a dynamic mismatch shaper, a code converter, a multi-channel digital amplifier and a digital speaker load which are connected to each other in sequence. By means of the device and method of the invention, the switching rate of the power tube, the power dissipation and heating generated during the switching are reduced, the sound quality and efficiency of electroacoustic restoration are improved, the volume, weight and implementation cost of the system are decreased, and the level of electromagnetic radiation is reduced. Furthermore, the device and method of the invention also have excellent immunity to the frequency response deviation of multiple digital channels.
A drive circuit is provided for reducing conducted electromagnetic interference provided by a power line to a motor controller. The drive circuit includes an EMI filter having first and second EMI filter input terminals, and first and second EMI filter output terminals. The first input terminal is configured to be coupled to a first AC line output and the second input terminal is configured to be coupled to a second AC line output. The drive circuit includes a rectifier portion having first and rectifier input terminals coupled to the first and second EMI output terminals, respectively. The drive circuit includes at least two series-coupled filter capacitors after the rectifier portion and a PFC choke coupled at a first end to one of the EMI filter output terminals and to one of the first and second rectifier input terminals, and at a second end between the series-coupled filter capacitors.
A motor driving device includes a microcomputer, a command voltage adjusting circuit, and a driving IC. The command voltage adjusting circuit converts a first command voltage signal from the microcomputer to a second command voltage signal. The driving IC generates a drive pulse based on the second command voltage signal. An upper and a lower limit of an input voltage range of the driving IC are larger than an upper and a lower limit of a voltage range of the first command voltage signal, respectively.
According to one embodiment, a rectifying circuit includes a transistor, a rectifying element and a resistor. The transistor includes a control electrode, a first electrode and a second electrode. The rectifying element includes an anode electrode and a cathode electrode. The cathode electrode is electrically connected to the first electrode. The resistor includes one end and one other end. The One end of the resistor is electrically connected to the control electrode. The one other end of the resistor is electrically connected to the anode electrode.
A power converter sub-assembly/module includes a power switching assemblage defining a cavity within which can be mounted a driver IC. The power switching assemblage includes a load inductor component stack attached to a power transistor block and an interconnect spacer block, defining a cavity between the two blocks. The power transistor block includes a high and low side FETs attached side-by-side to a switch-node metal carrier that includes an attach-surface opposite the FETs. The power switching assemblage is mountable to an interconnect surface that includes connection pads VIN, VOUT, GND, HG (high-side gate) and LG low-side gate). For a module configuration, the power switching assemblage is combined with a driver IC that provides high (HG) and low (LG) gate drive—the power switching assemblage and the driver IC are mounted to a module interconnect substrate, with the driver IC mounted within the cavity of the power switching assemblage.
A power conversion apparatus includes: a primary side circuit; a secondary side circuit that is magnetically coupled to the primary side circuit by a transformer; and a control unit that adjusts a transmitted power transmitted between the primary side circuit and the secondary side circuit by changing a phase difference between a switching operation of the primary side circuit and a switching operation of the secondary side circuit such that a port voltage of one port from among a primary side port provided in the primary side circuit and a secondary side port provided in the secondary side circuit converges on a target voltage. The control unit reduces the target voltage when the phase difference is equal to an upper limit value and the port voltage is smaller than a set threshold.
The invention relates to a signal (feed) separator for dead-zero or live-zero measurement signals. The signal (feed) separator has a primary-side (feed) input, a secondary-side output, a direct-current transformer for transferring primary-side measurement input current, an output stage for providing a secondary-side measurement output current, and an auxiliary energy feed-in for supplying the primary side and for supplying the secondary side. The auxiliary voltage of the auxiliary energy feed-in is controlled on the secondary side by a control device with the aid of a measuring device in such a way that the power loss of the output stage is substantially independent of a load connected in the operating state.
An AC/DC converter is disclosed. The proposed AC/DC converter generates an output voltage and includes a current ripple eliminator having an input terminal, an energy storage capacitor and an output terminal, wherein the input terminal has an input voltage, the output terminal generates a pure AC component of a voltage feedback signal based on the output voltage, when the input voltage is larger than a first reference voltage, the energy storage capacitor stores a difference between the input voltage and the first reference voltage as an electric energy, otherwise, the energy storage capacitor releases the electric energy to the input voltage, and an operational amplifier operating the AC component and a second reference voltage to determine when the storage capacitor should store or release the electric energy to minimize a ripple of an output power thereof.
The invention discloses a green power converter which omits the pulse width modulation (PWM) technique in the traditional power converter, does not have high-frequency power device, does not generate EMI interference, simultaneously adopts the symmetry basic primitive (SBP) technique, the amplitude high modulate (AHM) technique and the dynamic rectification (DR) technique, and only needs to perform traditional power conversion on a small part of the input power so as to acquire the whole output power, namely that a large part of the output power neither need traditional power conversion nor need to pass through a magnetic core transformer. The input AC voltage neither needs to be rectified and filtered nor has large inductance and large capacitance, thus the power factor is 1, and the total harmonic distortion (THD) is 0. A transformer secondary side adopts dynamic rectification, can acquire a DC circuit, and can also acquire an AC voltage. The circuit complexity, the power consumption and the failure rate of the whole green power converter are greatly lowered, and the power converter can be applied in all the fields to replace the traditional power converter.
Methods and apparatus for twisting rectangular rotor and stator conductor ends whereby most if not all conductor ends are bent at once, radially adjacent ends being bent in opposite directions. A lost motion member may be used to bend selected conductors through lesser angles for such purposes as phase interconnection and power leads. The rectangular conductors are retained against twisting so that flat conductors will bend about an axis perpendicular to the larger dimension of the conductor cross section. Various features of the methods and apparatus are disclosed.
The present invention provides a power generation method capable of storing natural energy without specific limitations and capable of taking out the natural energy as needed to generate power. The power generation method of the present invention includes a potential energy storage step and a power generation step. In the potential energy storage step, second objects are transferred from the low place to the high place by using a rotational force of a rotating body that is rotationally driven by a kinetic energy produced when a first object, which is present at a high place in nature, falls. In the power generation step, the power generator is operated by using the kinetic energy produced when the second objects fall.
An electric motor to replace conventional electrical motors for general applications comprising at least a propulsion unit (101). The propulsion unit (101) has a propulsion member (11) and a casing (12) having a pair of first guides (13) secured to opposite laterals. It also has a plurality of second guides (14) spaced and disposed along a surface of said casing (12), for receiving and actuating the propulsion member (11).
An energy storage and recovery system device for a vehicle, comprising a flywheel, a first and a second set of gears, and multiple wet mutliplate clutches, wherein one of each gear set is arranged coaxially along a clutch shaft with one of the clutches, and wherein the device is coupled to the vehicle transmission, such that actuation of a clutch redirected the torque path via the gears, thereby enabling multiple ratios and therefore multiple speeds.
A dynamo-electric machine, for example a marine propulsion unit, includes a stator and a rotor in the form of an impeller. The impeller is rim-driven and includes an annular core of ferromagnetic material, on which are provided layers in the form of an environmental enclosure and electrically conductive sleeves. Appropriate selection of the materials and thicknesses of the layers enables the starting and normal running performance of the machine to be optimized.
A modular emergency power system architecture (200) with a plurality of output power supply lines for feeding power to a destination, in which the operational status of each output power supply line is configurable. The architecture comprises a plurality of load bars (208, 209) from which power is delivered to the destination. The load bars (208, 209) are selectively connectable to send power to or receive AC power from a mains supply (202) and/or a DC bus (210) via one or more AC/DC power conversion modules (212, 214). The DC bus (210) is connected to receive a secondary (e.g. emergency) power supply (218, 224). The architecture may provide redundancy and on-the-fly reconfigurability to complement changes in the physical location of critical components in the destination, e.g. caused by virtualization, zoning or repair. The architecture is operable as a stand-alone uninterruptible power supply (UPS) or as an extended runtime generator for an existing UPS.
A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.
In accordance with particular embodiments, a method for managing power consumption includes receiving from a plurality of electricity relays an indication of a current state associated with each of the plurality of electricity relays. The method also includes receiving a power rate associated with a cost of power. The method further includes determining a threshold state based on the power rate and the current state associated with each of the plurality of electricity relays. The method additionally includes transmitting one or more control requests to one or more of the plurality of electricity relays. A first control request transmitted to a first electricity relay is based on the threshold state and a first current state associated with the first electricity relay.
In at least some embodiments, a computer system includes a processor and a storage device coupled to the processor. The storage device stores a program that, when executed, causes the processor to simulate restoration of a power grid system and to generate a restoration plan for the power grid system based on the simulation.
An apparatus for use in an electrical power generation plant. The apparatus includes: at least two adjustable speed drives, each connected, on an alternating current side, to an associated auxiliary motor; at least one reactive power consuming auxiliary device connected to an alternating current bus; a controller; a converter for converting alternating current to direct current or vice versa between the alternating current bus and a direct current bus; and at least one electrical power source arranged to provide power to the direct current bus. Each of the at least two adjustable speed drive is connected, on a direct current side, to the direct current bus.
An interface unit that interrupts overcurrent or overvoltage resulting from a ground voltage difference between electronic products interconnected through interface devices, so as to prevent damage to the products and risk of fire. The interface unit, which connects a first electronic product and a second electronic product to each other, includes a first interface device provided in the first electronic product and connected with the second electronic product, a second interface device provided in the second electronic product and connected with the first interface device through a VCC line and a ground line, and a ground overcurrent interrupter installed on the ground line, the ground overcurrent interrupter interrupting overcurrent flowing in the ground line.
An electrical assembly, such as a lighting assembly, includes a housing adapted for mounting to a wall or ceiling. The housing has an outer wall for attaching to the wall or ceiling and an opening for wire connections between the housing and the power source. An access plate adapter is removably coupled to the opening in the housing to define a channel between the housing and the wall or ceiling. The adapter has a bottom wall and a side wall forming a well and an outwardly extending top wall at a top end of the side wall. The bottom wall has as plurality of tabs forming hooks for coupling with the opening in the housing wall. The top wall of the adapter has a dimension to contact the surface of the wall or ceiling and form a seal to define a closed channel between the housing and the wall or ceiling.
A system for managing a plurality of cables that are connectable to one or more electronic devices is described. The system includes a housing and a plurality of openings in the housing. Each opening is dimensioned to receive one or more cables entering and/or exiting the housing. At least one of the plurality of openings is dimensioned to receive two or more of the plurality of cables at a given time. The system further includes an inner space defined by the housing. The inner space is configured to store at least a portion of each of the plurality of cables within the housing. Also, the system includes a weighted disk located within the inner space. The weighted disk has a weight sufficient to maintain the system in a substantially stationary position on a substantially level surface.
A quantum cascade laser includes a semiconductor region having a main surface including first and second regions arranged in a first axis direction; a stacked semiconductor layer disposed on the second region, the stacked semiconductor layer including a core layer and an upper cladding layer disposed on the core layer; and a distributed Bragg reflector disposed on the first region, the distributed Bragg reflector including at least one semiconductor wall having a side surface extending in a second axis direction perpendicular to the main surface of the semiconductor region, the semiconductor wall including the core layer and the upper cladding layer. The side surface of the semiconductor wall is optically coupled to an end facet of the stacked semiconductor layer. The side surface of the semiconductor wall includes a side surface of the core layer having a recess portion depressed from a side surface of the upper cladding layer in the semiconductor wall.
Methods and apparatus for generating ultrashort optical pulses. Pulses of an infrared source are launched into an optical fiber characterized by a zero-dispersion wavelength (ZDW), where the wavelength of the infrared source exceeds the ZDW of the optical fiber by at least 100 nm. A resonant dispersion wave (RDW) is generated in the optical fiber that has a central wavelength blue-shifted by more than 500 nm relative to the pump wavelength, and, in some cases, by more than 700 nm. The optical fiber has a core of a diameter exceeding the central wavelength of the RDW by at least a factor of five. In a preferred embodiment, the infrared source includes a master-oscillator-power-amplifier, embodied entirely in optical fiber, and may include an Erbium:fiber oscillator, in particular.
A pulsed fiber laser apparatus for outputting picosecond laser pulses can comprise a fiber delivered pulsed seed laser for providing picosecond optical seed pulses, and at least one optical fiber amplifier in optical communication with the fiber delivered pulsed seed laser. The optical fiber amplifier can comprise a gain optical fiber that receives and optically amplifies picosecond optical pulses by operating in a nonlinear regime wherein the picosecond optical pulses can be spectrally broadened by a factor of at least 8 during amplification thereof. The apparatus can further comprise a pulse compressor apparatus in optical communication with the optical fiber amplifier for providing compressed picosecond optical pulses. The pulse compressor apparatus can provide a dispersion of at least 50 ps/nm and can provide a compression ratio of the time duration of the picoseconds optical pulses received by the pulse compressor apparatus to the time duration of the compressed picosecond optical pulses of no greater than about 50.
An electrical contact insertion tool includes an insertion assembly, a handle assembly slidably coupled to the insertion assembly such that the insertion assembly is translatable between a first position with respect to the handle assembly and a second position with respect to the handle assembly, and a retention mechanism selectively movable between a first configuration and a second configuration. The handle assembly is configured to retain the insertion assembly in the first position with a first predetermined amount of force when the insertion assembly is in the first position. The retention mechanism is configured to retain an object between the retention mechanism and the insertion assembly with a second predetermined amount of force when the retention mechanism is in the second configuration.
An electrical connection device comprises a receptacle connector which comprises a first insulative housing, a guide frame and a plug connector which comprises a second insulative housing. The first insulative housing has a mounting portion and a mating portion protruding from the mounting portion. The guide frame is assembled with the receptacle connector, and comprises a frame body, a female latch unit and a stopping block. The frame body is assembled to the mounting portion of the first insulative housing and has an opening to allow the mating portion to pass through. The female latch unit and the stopping block protrude from the frame body respectively and are positioned at opposite two sides and spaced apart from the mating portion to together define a mating space. The second insulative housing has a housing body and a male latch unit formed at one side of the housing body and engaged with the female latch unit. When the plug connector is incorrectly inserted, the plug connector cannot enter into the mating space to mate with the receptacle connector due to blocking from the stopping block of the guide frame.
A mounting plate assembly for securing a plug of a network cable to a jack of an electronic device. The assembly includes a mounting plate having an attachment mechanism that is configured for releasable locking engagement with the electronic device. Further, the mounting plate is adapted to be mounted to a mounting structure. The mounting plate includes inner passageway that is adapted to receive insertion of at least a portion of the plug. Additionally, the inner passageway is adapted to depress a locking clip of the inserted plug to a position that prevents the locking clip from lockingly engaging a protrusion in an aperture of the jack. Further, the retention member may include at least one arm that is configured to retain the plug in a relatively static position relative to the mounting plate when the plug is being received in, and removed from, the aperture of the jack.
The connector for a card has a housing for accommodating a card provided with terminal members, and connecting terminals mounted in the housing and contacting the terminal members of the card. Here, at least one of the connecting terminals has a base portion provided along a rear edge of the housing, at least some of the base portion is embedded in a bottom wall portion of the housing, and a contact member forming a hoop along with the base portion. The contact member has a pair of spring portions connected to the base portion, a joining portion joining the pair of spring portions, and a contact portion connected to the leading end of the joining portion for contacting the terminal members of the card.
An electrical connector having one or more pairs of opposing contact arms extending from a body portion and configured to receive a mating connector. A spring clamp member is positioned over the opposing contact arms to increase a compressive force of the contact arms on the mating connector. The contact arms include stabilizing features to limit lateral, longitudinal, and/or rotational movement of the spring clamp member relative to the contact arms. The contact arms may be formed of a material having a high electrical connectivity and the spring clamp member may be formed of a different material having a higher relaxation temperature than the contact arm material. The mating connector may include be a male blade type terminal.
A connector includes a body, a slot within the body configured to receive a substrate and including a first end and a second end, contacts arranged along the slot between the first end and the second end, and a biasing mechanism arranged at the first end to align the substrate as the substrate is inserted into the slot so that substrate is in contact with the second end when the substrate is fully inserted into the slot.
A battery wiring module is configured to be attached to a battery group including a plurality of batteries each having electrode terminals including a positive electrode terminal and a negative electrode terminal and configured to connect the electrode terminals. The battery wiring module includes a plurality of connection units connected to each other in a battery arrangement direction in which the batteries are arranged. Each of the connection units includes a bus bar and a bus bar housing. The bus bar is configured to connect one of the electrode terminals of one of the batteries and one of the electrode terminals of another one of the batteries. The bus bar housing houses the bus bar. The bus bar has a pair of terminal through holes configured to receive the electrode terminals and each of the terminal through holes is formed in a shape elongated in the battery arrangement direction.
An adjustable antenna system for transmission and/or reception of electromagnetic waves enables adjustment of the length of an antenna cable for adjustably tuning one or more operating parameters of the antenna. The antenna system can include a spindle frame that can support a first spool and a second spool that are rotatably mountable on the spindle frame. Wrapped around the first spool can be a length of antenna cable and wrapped around the second spool can be a length of non-conducting line. The distal ends of the cable and line can be connected so that as spools are selectively rotated independently or dependently, the relative lengths of the cable and line are changed. The antenna system can further include a transmission bus partially disposed along the spindle frame to establish communication between the antenna cable and a connector for connecting to a transmitter/receiver associated with the antenna system.
A communication device including a ground element and an antenna element is provided. The antenna element includes a metal element. The metal element is disposed adjacent to an edge of the ground element. The metal element has a first connection point and a second connection point. A feeding point of the antenna element is coupled through an inductive element to the first connection point. A first feeding path is formed from the feeding point through the inductive element to the first connection point. The feeding point of the antenna element is further coupled through a capacitive element to the second connection point. A second feeding path is formed from the feeding point through the capacitive element to the second connection point. The feeding point of the antenna element is further coupled through a matching circuit to a signal source.
A directional coupler has a first line capable of transmitting a high-frequency signal therethrough and a second line arranged for electromagnetic coupling with the first line in a laminated board. The first line and the second line are routed on a first conductor layer to extend in close proximity to and in parallel with each other, to form an intra-layer coupling zone for developing electromagnetic coupling between the first line and the second line. The second line is routed on a second conductor layer such that the second line partially overlaps with the first line disposed on the first conductor layer with respect to a length-wise direction, when viewed in plan, to form an inter-layer coupling space for developing electromagnetic coupling between the second line on the second conductor layer and the first line on the first conductor layer.
A thin film balun that can be made smaller and thinner while maintaining required balun characteristics is provided. A thin film balun 1 includes: an unbalanced transmission line UL including a first coil portion C1 and a second coil portion C2; a balanced transmission line BL including a third coil portion C3 and a fourth coil portion C4 that are positioned facing and magnetically coupled to the first coil portion C1 and the second coil portion C2 respectively; an unbalanced terminal UT connected to the first coil portion C1; a ground terminal G connected to the second coil portion C2 via a C component D; and an electrode D2 connected to the ground terminal G and facing a part of the second coil portion C2. The C component D is formed by the electrode D2 and the part D1 of the second coil portion C2.
Q of resonant elements formed over lossy substrates such as in a CMOS process is improved by forming the ground plane of the resonant element immediately over a high impedance layer to reduce cross coupling and eddy currents. A new type of meandering hairpin resonator configuration is also introduced providing, for example, for 4th order cross coupled filters of high selectivity and compact layout.
Representative implementations of devices and techniques provide isolation between transmit and receive portions of a broadband transceiver of a wireless communication system. filterless isolation technique is performed via a directional Phase shifting arrangement that includes an isolating hybrid device coupled to a non-reciprocal phase shifting combiner/splitter.
The invention is directed in a first aspect to an ionic liquid of the general formula Y+Z−, wherein Y+ is a positively-charged component of the ionic liquid and Z− is a negatively-charged component of the ionic liquid, wherein Z− is a boron-containing anion of the following formula: The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y+Z− is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y+X− and/or non-ionic solvent and/or non-ionic solvent additive.
A main object of the present invention is to provide a Li—La—Ti—O based solid electrolyte material having high Li ion conductivity in the crystal grain boundary. The present invention attains the object by providing solid electrolyte material represented by a general formula: Li3x(La(2/3−x)−aM1a) (Ti1−bM2b)O3, wherein “x” is 0
A fuel cell system includes a fuel cell, a reactant gas supply device, a voltage adjusting device, a load, and a control device. The control device executes a fixed voltage/variable output control where, in a state where an output voltage of the fuel cell is fixed to a voltage value outside of a redox advancing voltage range using the voltage adjusting device, a supply amount of reactant gas supplied from the reactant gas supply device to the fuel cell is changed so as to track a request output of the load. The control device restricts a change rate of the supply amount of the reactant gas supplied from the reactant gas supply device to the fuel cell if there is change in the request output of the load while the fixed voltage/variable output control is being executed.
A system, method, and articles of manufacture for a surface-modified transition metal cyanide coordination compound (TMCCC) composition, an improved electrode including the composition, and a manufacturing method for the composition. The composition, compound, device, and uses thereof according to AxMn(y-k)Mjk[Mnm(CN)(6-p-q)(NC)p(Che)rq]z.(Che)rw(Vac)(1-z).nH2O (wherein Vac is a Mn(CN)(6-p-q)(NC)p(Che)rq vacancy); wherein Che is an acid chelating agent; wherein: A=Na, K, Li; and M=Mg, Al, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Pd, Ag, Cd, In, Sn, Pb; and wherein 0
Battery electrodes are provided that can include a conductive core supported by a polymeric frame. Methods for manufacturing battery electrodes are provided that can include: providing a sheet of conductive material; and framing the sheet of conductive material with a polymeric material. Batteries are provided that can include a plurality of electrodes, with individual ones of the electrodes comprising a conductive core supported by a polymeric frame.
A negative electrode material for a lithium ion battery, in which a fine particle (A) containing an element selected from Si, Sn, Ge and In and a carbon particle (B) obtained by heat-treating a petroleum-based coke and/or a coal-based coke at a temperature of 2,500° C. or more are connected through a chemical bond such as urethane bond, urea bond, siloxane bond and ester bond. Also disclosed are a negative electrode sheet obtained by coating a current collector with a paste containing the negative electrode material, a binder and a solvent, and then drying and pressure-forming the paste; and a lithium ion battery incorporating the negative electrode sheet.
A system for the automated coiling of a jelly roll electrode assembly for controlled assembly and tensioning of jelly roll assembly is provided. The system includes: a shuttle, and a mandrel to which electrodes are welded; a base, mateable with the shuttle and on which the battery head assembly is mounted for welding to the mandrel; and a coiling device. The coiling device has an upper spool, a lower spool, holding a separator strip and a platform between the two holding the base. The separator strip is threaded through a passage in the mandrel separating positive and negative portions. Rotating the mandrel coils the positive electrode, the separator strip and the negative electrode to coil around the mandrel. The coiling device may include a feedback loop braking one or both spools and allowing the coiling tension to be programmed to a desired level.
Disclosed is a display panel including: a flexible substrate; a buffer layer disposed on the flexible substrate; a pixel disposed on the buffer layer and comprising a thin film transistor and an image device connected to the thin film transistor; a barrier layer disposed on the flexible substrate to protect the pixel from a substance from the flexible substrate; and a diffusion prevention layer disposed between the barrier layer and the buffer layer and configured to prevent hydrogen generated from the barrier layer from being diffused into the thin film transistor.
An organic semiconductor device includes an organic semiconductor, an electrode electrically connected to the organic semiconductor, and a self-assembled monolayer positioned between the organic semiconductor and the electrode, the self-assembled monolayer including a monomer having an anchor group at one end and an ionic functional group at another end.
Provided are a polymer for an organic electroluminescent element, which has high light emission efficiency and is applicable to a wet process, a cured product thereof, and an organic electroluminescent element using the cured product. The polymer for an organic electroluminescent element is represented by the following general formula (1) and includes an indolocarbazole skeleton and a polymerizable group as pendants in a repeating unit constituting a main chain, in which the polymer has a weight-average molecular weight of 1,000 to 1,000,000. An organic electroluminescent element that uses the cured product of the polymer for an organic electroluminescent element in an organic layer is also disclosed. R's each represent a hydrogen atom or a monovalent organic group, Y represents a divalent linking group, Z represents a substituted or unsubstituted indolocarbazolyl group having a bonding hand at an N-position, W represents a polymerizable group, m and n represent abundance molar ratios, and m represents 1 to 95 mol % and n represents 5 to 99 mol %, and 1 represents an average number of repetitions and represents 2 to 10,000.
The present invention relates to a solid-state assembly of layers and to an electric solid-state device comprising such assembly. In one aspect, such electric device is a field effect transistor. In another aspect, such device is a memory device. In yet a further aspect, the device is a sensor device.
A manufacture includes a first electrode having an upper surface, a second electrode having a lower surface directly over the upper surface of the first electrode, a resistance variable film between the first electrode and the second electrode, and a first conductive member on and surrounding an upper portion of the second electrode.
An optoelectronic semiconductor chip is disclosed. The optoelectronic semiconductor chip includes a semiconductor layer sequence having an active zone suitable for emitting radiation, a carrier substrate, and a mirror layer, the mirror layer being arranged between the semiconductor layer sequence and the carrier substrate, wherein the semiconductor layer sequence is subdivided into a plurality of active regions arranged alongside one another, wherein the plurality of active regions are separated from one another in each case by a trench in the semiconductor layer sequence, wherein the trench in each case severs the semiconductor layer sequence and the mirror layer, wherein the mirror layer has side surfaces facing a trench and side surfaces facing an outer side of the semiconductor chip, wherein the side surfaces of the mirror layer that face an outer side of the semiconductor chip have a metallic encapsulation layer.
A light emitting device includes a light emitting structure comprising a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer; a first electrode arranged on the first conductivity type semiconductor layer; an ohmic layer arranged on a predetermined area of the second conductivity type semiconductor layer; a silicide layer arranged on the ohmic layer, with contacting with the second conductivity type semiconductor layer; and a conductive supporting substrate arranged on the silicide layer.
The invention provides an optoelectronic device adapted to emit ultraviolet light, including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm−2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and an ultraviolet light-emitting diode structure overlying the aluminum nitride single crystalline substrate, the diode structure including a first electrode electrically connected to an n-type semiconductor layer and a second electrode electrically connected to a p-type semiconductor layer. In certain embodiments, the optoelectronic devices of the invention exhibit a reverse leakage current less than about 10−5 A/cm2 at −10V and/or an L80 of at least about 5000 hours at an injection current density of 28 A/cm2.
A process for fabricating an array of nanowires on the surface of a substrate, the nanowires comprising a portion capable of emitting radiation under action of an electrical or optical control and at least partially connected to one another electrically via a conductive upper layer, comprises steps allowing a subset of defective nanowires to be identified among active nanowires, the steps comprising: producing a layer of negative photoresist sensitive to the emission wavelength, covering the array of the nanowires; activating the array of the nanowires under electrical control or optical control so the active nanowires emit the radiation, the radiation decreasing the solubility of the negative resist; developing the resist level with the defective nanowires, leaving zones made less soluble and encircling the active nanowires; and removing the conductive layer above the defective nanowires. A process for fabricating one or more light-emitting diodes using the process is provided.
An active matrix substrate (2) is provided with first connecting wirings (641, 643, 645, 647) connected to gate terminals (51) to which extraction wirings (611, 613, 615, 617) are connected, second connecting wirings (642, 644, 646) connected to gate terminals (51) to which extraction wirings (612, 614, 616) are connected, bundled wirings (651 to 654) each composed of a mutually adjacent first connecting wiring and second connecting wiring bundled together, a first inspection wiring (66) capable of inputting an inspection signal to bundled wirings (652, 654) that are not adjacent to each other among the bundled wirings, and a second inspection wiring (67) capable of inputting an inspection signal to bundled wirings (651, 653) that are not adjacent to each other and not connected to the first inspection wiring (66) among the bundled wirings.
A solar cell module is manufactured by encapsulating a solar cell matrix comprising a plurality of electrically connected solar cell components between a transparent panel and a backsheet with a resin. The method involves (i) embossing opposite surfaces of a green silicone rubber sheet, (ii) arranging a transparent panel (13a), silicone rubber sheet (11), solar cell matrix (14), silicone rubber sheet (11), and backsheet (13b) to form a multilayer assembly, and (iii) heating and compressing the assembly for vacuum lamination for establishing a seal around the solar cell matrix.
A tempered glass substrate of the present invention is a tempered glass substrate, which has a compression stress layer on a surface thereof, and has a glass composition comprising, in terms of mass %, 40 to 71% of SiO2, 3 to 21% of Al2O3, 0 to 3.5% of Li2O, 7 to 20% of Na2O, and 0 to 15% of K2O.
Various embodiments of a novel structure of a Ge/Si avalanche photodiode with an integrated heater, as well as a fabrication method thereof, are provided. In one aspect, a doped region is formed either on the top silicon layer or the silicon substrate layer to function as a resistor. When the environmental temperature decreases to a certain point, a temperature control loop will be automatically triggered and a proper bias is applied along the heater, thus the temperature of the junction region of a Ge/Si avalanche photodiode is kept within an optimized range to maintain high sensitivity of the avalanche photodiode and low bit-error rate level.
A solid state imaging device 1 is provided with a photoelectric conversion portion 2 having photosensitive regions 13, and a potential gradient forming portion 3 arranged opposite to the photosensitive regions 13. A planar shape of each photosensitive region 13 is a substantially rectangular shape composed of two long sides and two short sides. The photosensitive regions 13 are juxtaposed in a first direction intersecting with the long sides. The potential gradient forming portion 3 has a first potential gradient forming region to form a potential gradient becoming lower along a second direction from one of the short sides to the other of the short sides, and a second potential gradient forming region to form a potential gradient becoming higher along the second direction. The second potential gradient forming region is arranged next to the first potential gradient forming region in the second direction.
A semiconductor device includes a substrate having a first conductivity type, a first heavily-doped region formed in the substrate and having the first conductivity type, a second heavily-doped region formed in the substrate and having the first conductivity type, and an embedded layer formed in the substrate and separated from the first and second heavily-doped regions. The embedded layer has a second conductivity type different from the first conductivity type. A portion of the embedded layer is beneath the first heavily-doped region. A third heavily-doped region is formed in the substrate, between the first and second heavily-doped regions, and contacting the embedded layer, and has the second conductivity type.
A transistor includes a gate in contact with a substrate. A gate insulating layer is in contact with at least the gate. An inorganic semiconductor layer is in contact with the gate insulating layer. There is a source electrode in contact with a first portion of the inorganic semiconductor layer and a drain electrode in contact with a second portion of the inorganic semiconductor layer, and the source electrode and the drain electrode are separated by a gap. There is a multilayer insulating structure in contact with at least the inorganic semiconductor layer in the gap. The multilayer structure includes an inorganic dielectric layer having a first pattern defining a first area; and a polymer structure having a second pattern defining a second area. The second area is located within the first area and the polymer structure is in contact with the semiconductor layer in the gap.
A semiconductor structure comprises a substrate, a plurality of fins, an oxide layer and a gate structure. The fins protrude from the substrate and are separated from each other by the oxide layer. The surface of the oxide layer is uniform and even plane. The gate structure is disposed on the fins. The fin height is distance between the top of the fins and the oxide layer, and at least two of the fins have different fin heights.
A P-type field effect transistor includes: a gate area; an insulated area, adjacent to the gate area; a source region and a drain region made by silicon germanium, respectively, adjacent to the second side of the insulated area; a channel area, adjacent to the insulated area and formed between the source region and the drain region; a conductive layer, electrically connected to the source region and the drain region, respectively; and a plurality of capping layers, connected between the conductive layer and the source/drain regions, wherein the silicon layer(s) and the silicon germanium layer(s) are stacked alternately, and of which a silicon layer contacts the source/drain silicon germanium regions, while a silicon germanium layer contacts the conductive layer. The present invention also provides a complementary metal oxide semiconductor transistor including the P-type field effect transistor mentioned above.
A method includes forming a recess into a crystalline semiconductor substrate, the recess being disposed beneath and surrounding a channel region of a transistor; depositing a layer of crystalline dielectric material onto a surface of the substrate that is exposed within the recess; and depositing stressor material into the recess such that the layer of dielectric material is disposed between the stressor material and the surface of the substrate. A structure includes a gate stack or gate stack precursor disposed on a SOI layer disposed upon a BOX that is disposed upon a surface of a crystalline semiconductor substrate. A transistor channel is disposed within the SOI layer. The structure further includes a channel stressor layer disposed at least partially within a recess in the substrate and disposed about the channel, and a layer of crystalline dielectric material disposed between the stressor layer and a surface of the substrate.
A vertical transistor component includes a semiconductor body with first and second surfaces, a drift region, and a source region and body region arranged between the drift region and the first surface. The body region is also arranged between the source region and the drift region. The vertical transistor component further includes a gate electrode arranged adjacent to the body zone, a gate dielectric arranged between the gate electrode and the body region, and a drain region arranged between the drift region and the second surface. A source electrode electrically contacts the source region, is electrically insulated from the gate electrode and arranged on the first surface. A drain electrode electrically contacts the drain region and is arranged on the second surface. A gate contact electrode is electrically insulated from the semiconductor body, extends in the semiconductor body to the second surface, and is electrically connected with the gate electrode.
A semiconductor device includes a first semiconductor layer formed on a substrate; a second semiconductor layer and a third semiconductor layer formed on the first semiconductor layer; a fourth semiconductor layer formed on the third semiconductor layer; a gate electrode formed on the fourth semiconductor layer; and a source electrode and a drain electrode formed in contact with the second semiconductor layer. The third semiconductor layer and the fourth semiconductor layer are formed in an area immediately below the gate electrode, the fourth semiconductor layer is formed with a p-type semiconductor material, and the second semiconductor layer and the third semiconductor layer are formed with AlGaN, and the third semiconductor layer has a lower composition ratio of Al than that of the second semiconductor layer.
A gated III-V semiconductor structure and a method for fabricating the gated III-V semiconductor structure includes a threshold modifying dopant region within a III-V semiconductor barrier layer at the base of an aperture through a passivation layer that otherwise passivates the III-V semiconductor barrier layer. The passivation layer, which may comprise an aluminum-silicon nitride material, has particular bandgap and permittivity properties that provide for enhanced performance of a III-V semiconductor device that derives from the III-V semiconductor structure absent a field plate. The threshold modifying dopant region provides the possibility for forming both an enhancement mode gated III-V semiconductor structure and a depletion mode III-V semiconductor structure on the same substrate. The threshold modifying dopant region when comprising a magnesium (Mg) threshold modifying dopant may be incorporated into the gates III-V semiconductor structure using a dicyclopentadienyl magnesium (Cp2Mg) vapor diffusion method or a magnesium-silicon nitride (MgSiN) solid state diffusion method.
A semiconductor device including a nonvolatile memory cell in which a writing transistor which includes an oxide semiconductor, a reading transistor which includes a semiconductor material different from that of the writing transistor, and a capacitor are included is provided. Data is written to the memory cell by turning on the writing transistor and applying a potential to a node where a source electrode (or a drain electrode) of the writing transistor, one electrode of the capacitor, and a gate electrode of the reading transistor are electrically connected, and then turning off the writing transistor, so that the predetermined amount of charge is held in the node. Further, when a p-channel transistor is used as the reading transistor, a reading potential is a positive potential.
One illustrative method disclosed herein includes forming a silicon/germanium fin in a layer of insulating material, wherein the fin has a first germanium concentration, recessing an upper surface of the layer of insulating material so as to expose a portion of the fin, performing an oxidation process so as to oxidize at least a portion of the fin and form a region in the exposed portion of the fin that has a second germanium concentration that is greater than the first germanium concentration, removing the oxide materials from the fin that was formed during the oxidation process and forming a gate structure that is positioned around at least the region having the second germanium concentration.
Devices and methods of forming a device are disclosed. A substrate prepared with at least a first transistor and a second transistor is provided. Each of the first and second transistors includes a gate disposed on the substrate between first and second contact regions in the substrate. A silicide block layer is formed on the substrate and is patterned to expose portions of the first and second contact regions. Silicide contacts are formed in the exposed first and second contact regions. The silicide contacts are displaced from sides of the gates of the first and second transistors. A contact dielectric layer is formed and contacts are formed in the contact dielectric layer. The contacts are in communication with the silicide contacts in the contact regions.
First and second ranges of a silicon carbide film have an interface. The first range includes: a first breakdown voltage holding layer having a first conductivity type; and an outer edge embedded region provided at an interface in the outer edge portion and having a second conductivity type. The second range includes a second breakdown voltage holding layer having the first conductivity type. A semiconductor element is formed in the second range. The first range includes: a central section facing the semiconductor element in the central portion in a thickness direction; and an outer edge section facing the semiconductor element in the outer edge portion in the thickness direction. At the interface, the outer edge section includes a portion having an impurity concentration different from the impurity concentration of the central section.
A method of forming a semiconductor structure. The method may include; forming first fins in a pFET region and an nFET region using epitaxial growth, the first fins are a group IV semiconductor; forming a spacer layer on the first fins; removing the spacer layer from a top surface and a first side of the first fins in the nFET region, a portion of the first fins are exposed on the top surface and the first side of the first fins in the nFET region; and forming second fins on the exposed portion of the first fins using epitaxial growth, the second fins are a group IV semiconductor, the second fins have a second pitch between adjacent second fins, the first pitch is equal to the second pitch, the first fins and the second fins have a shared bottom surface.
A semiconductor device includes a pillar-shaped semiconductor layer and a sidewall having a laminated structure. The laminated structure includes an insulating film and silicon, and the laminated structure is on an upper sidewall of the first pillar-shaped semiconductor layer. The silicon is electrically connected to a top of the pillar-shaped semiconductor layer.
A semiconductor device includes a first channel having a first linear surface and a first non-linear surface. The semiconductor device includes a first dielectric region surrounding the first channel. The semiconductor device includes a second channel having a third linear surface and a third non-linear surface. The semiconductor device includes a second dielectric region surrounding the second channel. The semiconductor device includes a gate electrode surrounding the first dielectric region and the second dielectric region.
One illustrative device disclosed herein includes, among other things, an active region defined in a semiconductor substrate, a layer of material positioned above the substrate, a plurality of laterally spaced-apart source/drain trenches formed in the layer of material above the active region, a conductive source/drain contact structure formed within each of the source/drain trenches, a gate trench formed at least partially in the layer of material between the spaced-apart source/drain trenches in the layer of material, wherein portions of the layer of material remain positioned between the source/drain trenches and the gate trench, a gate structure positioned within the gate trench, and a gate cap layer positioned above the gate structure.
A method of fabricating a semiconductor device includes forming a plurality of semiconductor fins on an insulator layer of a semiconductor substrate, and forming a plurality of gate stacks on the insulator layer. Each gate stack wraps around a respective portion of the semiconductor fins. The method further includes forming a dielectric layer on the insulator layer. The dielectric layer fills voids between the semiconductor fins and gate stacks, and covers the semiconductor fins. The method further includes etching at least one portion of the semiconductor fins until reaching the insulator layer such that at least one cavity is formed. The cavity exposes seed regions of the semiconductor fins located between adjacent gate stacks. The method further includes epitaxially growing a semiconductor material from the seed regions to form source/drain regions corresponding to a respective gate stack.
Manufacturing-friendly and scalable methods for the production of silicon micro- and nanostructures, including silicon nanotubes, are described. The inventive methods utilize conventional integrated circuit and MEMS manufacturing processes, including spin-coating, photolithography, wet and dry silicon etching, and photoassisted electrochemical etch processes. The invention also provides a novel mask, for maximizing the number of tubes obtained per surface area unit of the silicon substrate on which the tubes are built. The resulting tubes have thick and straight outer walls, as well as high aspect ratios.
Integrated circuits and methods for producing such integrated circuits are provided. A method for producing the integrated circuit includes forming dummy structures in a substrate, and forming shallow trench isolation regions between the dummy structures where the shallow trench isolation regions includes a liner overlying a core. The dummy structures are etched to expose structure bases, and the structure bases are precleaned. Replacement structures are epitaxially grown over the structure bases.
Disclosed is an organic light emitting display device. The organic light emitting display device includes a switching thin film transistor (TFT) that includes a lower gate, a source, and a drain formed on a substrate and on the same layer, a first gate insulating layer formed to cover the lower gate, the source, and the drain, an active layer formed on the first gate insulating layer, a conductive line formed to contact the source and the drain, a second gate insulating layer formed on the active layer, and an upper gate formed on the second gate insulating layer. The lower gate of the switching TFT is a light shield that blocks light from being irradiated onto the active layer.
An organic light-emitting display apparatus includes: a substrate having a display area and a peripheral area surrounding the display area; a first insulation layer, which is located on the substrate across the display area and the peripheral area and comprises a first opening (e.g., a first groove or first hole) at the peripheral area; and a first conductive layer, which is located on the first insulation layer and has one end portion located in the first opening, wherein a distance between the top surface of the substrate and the top surface of the one end portion of the first conductive layer is smaller than or equal to a distance between the top surface of the substrate and the top surface of the first insulation layer, the portion of the one end portion of the first conductive layer being a portion of the first conductive layer toward an edge of the substrate.
A display device may include a display panel, a window substrate and a light shielding member. The display panel may include an active area in which pixels are disposed, and a non-active area at the periphery of the active area. The window substrate may be disposed above the display panel, and may include a frame pattern layer formed thereon. In the window substrate, the frame pattern layer may cover a portion including an outer edge in the non-active area. The light shielding member may include a light shielding sheet disposed below the display panel, and an adhesive layer disposed between the light shielding sheet and the display panel. In the display device, the adhesive layer includes an opening formed in at least one area between the frame pattern layer and the active area in an area corresponding to the non-active area.
Integrated circuits with magnetic tunnel junction (MTJ) structures and methods for fabricating integrated circuits with MTJ structures are provided. An exemplary method for fabricating an integrated circuit includes forming a first conductive line in electrical connection with an underlying semiconductor device. The method exposes a surface of the first conductive line. Further, the method selectively deposits a conductive material on the surface of the first conductive line to form an electrode contact. The method includes forming a MTJ structure over the electrode contact.
Certain embodiments provide a solid-state imaging device including a pixel portion including a first light receiving layer, a charge accumulation portion including a first charge accumulation layer which accumulates a charge, a first transfer gate portion, a charge detection portion and a second transfer gate portion. The first transfer gate portion transfers the charge from the pixel portion to the charge accumulation portion, and the second transfer gate portion transfers the charge from the charge accumulation portion to the charge detection portion. The charge detection portion causes a voltage drop corresponding to an amount of the charge transferred to this region. An impurity layer of a ring shape which includes an opening portion is provided on a surface of at least one of the first light reception layer of the pixel portion and the first charge accumulation layer of the charge accumulation portion.
A CMOS image sensor and a method of forming are provided. The CMOS image sensor may include a device wafer. A conductive feature may be formed on a back-side surface of the device wafer. The device wafer may include a pixel formed therein. A passivation layer may be formed over the back-side surface of the device wafer and the conductive feature. A grid film may be formed over the passivation layer. The grid film may be patterned to accommodate a color filter. The grid film pattern may align the color filter to corresponding pixel in the device wafer. A portion of the grid film formed over the conductive feature may be reduced to be substantially planar with portions of the grid film adjacent to the conductive feature. The patterning and reducing may be performed according to etching processes, chemical mechanical processes, and combinations thereof.
The present invention includes an interposer disposed on a surface of a substrate, a light sensing array sensor disposed on the interposer, the light sensing array sensor being back-thinned and configured for back illumination, the light sensing array sensor including columns of pixels, one or more amplification circuitry elements configured to amplify an output of the light sensing array sensor, the amplification circuits being operatively connected to the interposer, one or more analog-to-digital conversion circuitry elements configured to convert an output of the light sensing array sensor to a digital signal, the ADC circuitry elements being operatively connected to the interposer, one or more driver circuitry elements configured to drive a clock or control signal of the array sensor, the interposer configured to electrically couple at least two of the light sensing array sensor, the amplification circuits, the conversion circuits, the driver circuits, or one or more additional circuits.
An image sensor is formed by a pixel array including a plurality of pixels. Certain ones of the pixels include, above their active areas, a first optical grating formed of periodically spaced apart parallel strips separated from the active area by a first insulator. Those pixels further include, in another metal level, a second optical grating formed of periodically spaced apart parallel strips separated from the first grating by a second insulator. The second optical grating is laterally shifted with respect to the first grating in a direction orthogonal to a longitudinal direction of the parallel strips.
According to example embodiments, a three-dimensional semiconductor device including a substrate with cell and connection regions, gate electrodes stacked on the cell region, a vertical channel structure, pads, a dummy pillar, and first and second semiconductor patterns. The vertical channel structure penetrates the gate electrodes on a lowermost gate electrode and includes a first gate dielectric pattern. The pads extend from the gate electrodes and are stacked on the connection region. The dummy pillar penetrates some of the pads on a lowermost pad and includes a second gate dielectric pattern. The first semiconductor patterns are between the vertical channel structure and the substrate. The second semiconductor patterns are between the dummy pillar and the substrate. The first and second gate dielectric patterns may be on the first and second semiconductor patterns, respectively. The second gate dielectric pattern may cover a whole top surface of the second semiconductor pattern.
A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
A manufacturing method of capacitor lower electrode of the instant disclosure comprises the steps of: providing a semiconductor substrate; forming a sacrificial laminate on the semiconductor substrate; forming a plurality of capacitor trenches in the sacrificial laminate; forming a plurality of lower electrode structures in the capacitor trenches respectively; etching back the sacrificial laminate to a desired thickness to expose an upper portion of each of the lower electrode structures; forming a liner layer to conformally cover the sacrificial laminate and the upper portions of the lower electrode structures; patterning the liner layer to form an insulating spacer on the sidewalls of each of the upper portions, wherein two adjacent insulating spacers are configured to have a self-aligned opening positioned therebetween; and performing a wet-etching process to remove the sacrificial laminate through the self-aligned openings.
An integrated circuit includes a semiconductor substrate; a first shallow trench isolation (STI) feature of a first width and a second STI feature of a second width in a semiconductor substrate. The first width is less than the second width. The first STI feature has an etch-resistance less than that of the second STI feature.
A stackable microelectronic package includes a first microelectronic die attached to and electrically connecting with a first substrate. A second microelectronic die is attached to the first die on one side, and to a second substrate on the other side. Electrical connections are made between the first die and the first substrate, between the second die and the second substrate, and between the first and second substrates, e.g., via wire bonding. The electrical connecting elements are advantageously encased in a molding compound. Exposed contacts on the first and/or second substrates, not covered by the molding compound, provide for electrical connections between the package, and another package stacked onto the package. The package may avoid coplanarity factors, can be manufactured using existing equipment, allows for intermediate testing, and can also offer a thinner package height.
A MEMS device includes a MEMS substrate with a movable element. Further included is a CMOS substrate with a cavity, the MEMS substrate disposed on top of the CMOS substrate. Additionally, a back cavity is connected to the CMOS substrate, the back cavity being formed at least partially by the cavity in the CMOS substrate and the movable element being acoustically coupled to the back cavity.
A stacked microelectronic package can comprise a package body having an external vertical package sidewall, a plurality of microelectronic devices embedded within the package body, and package edge conductors electrically coupled to the plurality of microelectronic devices and extending to the external vertical package sidewall. A cavity is formed on an external surface of the package body between a first one of the package edge conductors and a second one of the package edge conductors. Electrically conductive material is in the cavity and in electrical contact with a first and a second one of the package edge conductors, wherein the conductive material in the cavity is within planform dimensions of the microelectronic package.
A device for protecting a set of N nodes from electrostatic discharges, wherein N is greater than or equal to three, includes a set of N units respectively possessing N first terminals respectively connected to the N nodes and N second terminals connected together to form a common terminal. Each unit includes at least one MOS transistor including a parasitic transistor connected between a pair of the N nodes and configured, in the presence of a current pulse between the pair of nodes, to operate, at least temporarily, in a hybrid mode including MOS-type operation in a sub-threshold mode and operation of the bipolar transistor.
A method is described that facilitates inter-layer dielectric fill-in among transistors in a densely-configured array of an integrated circuit. An etch process that exploits a micro-loading effect to create a T-shaped profile between transistors is disclosed. The micro-loading has a negligible effect on transistors in a peripheral region of the integrated circuit.
A process of bumping a die backside includes opening a recess in a die backside film (DBF) to expose a through-silicon via (TSV) contact in a die, followed by filling the recess with a conductive material that contacts the TSV contact. Added solder is coupled to the conductive material at a level of the DBF. A subsequent die is coupled to the first die at the added solder to form an electrical coupling consisting of the TSV contact, the conductive material, and the added solder, an electrical bump coupled to the subsequent die. Apparatus and computer systems are assembled using the process.
Embodiments of the present disclosure include a semiconductor device and methods of forming a semiconductor device. An embodiment is a semiconductor device comprising an interconnecting structure consisting of a plurality of thin film layers and a plurality of metal layers disposed therein, each of the plurality of metal layers having substantially a same top surface area, and a die comprising an active surface and a backside surface opposite the active surface, the active surface being directly coupled to a first side of the interconnecting structure. The semiconductor device further comprises a first connector directly coupled to a second side of the interconnecting structure, the second side being opposite the first side.
An interconnect assembly for an embedded chip package includes a dielectric layer, first metal layer comprising upper contact pads, second metal layer comprising lower contact pads, and metalized connections formed through the dielectric layer and in contact with the upper and lower contact pads to form electrical connections therebetween. A first surface of the upper contact pads is affixed to a top surface of the dielectric layer and a first surface of the lower contact pads is affixed to a bottom surface of the dielectric layer. An input/output (I/O) of a first side of the interconnect assembly is formed on a surface of the lower contact pads that is opposite the first surface of the lower contact pads, and an I/O of a second side of the interconnect assembly is formed on a surface of the upper contact pads that is opposite the first surface of the upper contact pads.
An electrically conductive interconnect is provided through an opening in a dielectric layer, electrically connecting two conductive layers. In one embodiment, the interconnect is formed by ruthenium entirely filling the opening in the dielectric layer. In another embodiment, an adhesion layer of titanium is provided in the opening prior to providing the ruthenium. In using this approach, an aspect ratio (i.e., the ratio of the length of the interconnect to the width thereof) of 20:1 or greater is achievable.
A semiconductor device includes a frame including a first step portion provided in a ring shape in an inner circumference of one main surface of the frame, a second step portion provided in a ring shape in an inner circumference of another main surface of the frame, and an inner wall provided between the first step portion and the second step portion; a terminal leading from the first step portion to outside; a circuit board fitted to the second step portion; and an adhesive resin bonding the second step portion and the circuit board, and contacting the inner wall and the terminal.
Embodiments of mechanisms of forming a semiconductor device structure are provided. The semiconductor device structure includes a first semiconductor wafer and a second semiconductor wafer. The first semiconductor wafer includes a first transistor formed in a front-side of the first semiconductor wafer, and the second semiconductor wafer includes a second transistor formed in a front-side of the second semiconductor wafer. A backside of the second semiconductor wafer is bonded to the front-side of the first semiconductor wafer. The semiconductor device structure further includes an interconnect structure formed over the front-side of the second semiconductor wafer, and at least one first through substrate via (TSV) directly contacts a conductive feature of the first semiconductor wafer and the interconnect structure.
A heat sink for an electronic device includes a Cr—Cu alloy layer including a Cu matrix and more than 30 mass % and not more than 80 mass % of Cr; and Cu layers provided on top and rear surfaces of the Cr—Cu alloy layer.
A surface-mount package structure for reducing the ingress of moisture and gases thereto is disclosed. The surface-mount structure includes a sub-module having a dielectric layer, semiconductor devices attached to the dielectric layer, a first level interconnect structure electrically coupled to the semiconductor devices, and a second level I/O connection electrically coupled to the first level interconnect and formed on the dielectric layer, with the second level I/O connection configured to connect the sub-module to an external circuit. The semiconductor devices of the sub-module are attached to a substrate structure, with a dielectric material positioned between the dielectric layer and the substrate structure to fill in gaps in the surface-mount structure. A diffusion barrier layer is applied over the sub-module, adjacent the first and second level I/O connections, and extends down to the substrate structure to reduce the ingress of moisture and gases from a surrounding environment into the surface-mount structure.
An integrated circuit includes a number of lateral diffusion measurement structures arranged on a silicon substrate. A lateral diffusion measurement structure includes a p-type region and an n-type region which cooperatively span a predetermined initial distance between opposing outer edges of the lateral diffusion measurement structure. The p-type and n-type regions meet at a p-n junction expected to be positioned at a target junction location after dopant diffusion has occurred.
A substrate bonding apparatus is equipped with a first table that holds one wafer of two wafers, a stage device that holds the other wafer in an orientation capable of opposing to the one wafer and that is movable at least within an XY plane, an interferometer system that measures positional information of the stage device within the XY plane, a first mark detection system that can detect subject marks including alignment marks on the other wafer held by the stage device, and a second mark detection system fixed to a part (the second table) of the stage device that can detect subject marks including alignment marks on the one wafer held by the first table.
In one aspect, a method of forming a multiple VT device structure includes the steps of: forming an alternating series of channel and barrier layers as a stack having at least one first channel layer, at least one first barrier layer, and at least one second channel layer; defining at least one first and at least one second active area in the stack; selectively removing the at least one first channel/barrier layers from the at least one second active area, such that the at least one first channel layer and the at least one second channel layer are the top-most layers in the stack in the at least one first and the at least one second active areas, respectively, wherein the at least one first barrier layer is configured to confine charge carriers to the at least one first channel layer in the first active area.
A method for cutting a substrate includes: radiating, as part of a first laser radiating process, a laser towards a surface of the substrate to form a first groove in a substrate. Radiating the laser towards the surface includes radiating, in sequence, the laser towards a first outer point (FOP), a second outer point (SOP), a first intermediate point (FIP), a second intermediate point (SIP), and a first cut point (FCP) of the surface, each of the points being spaced apart from one another by one or more distances. The FCP corresponds to a cut line of the substrate. The FOP and the SOP are respectively disposed at lateral sides of the FCP. The FIP is disposed between the FCP and the FOP. The SIP is disposed between the FCP and the SOP. The same kind and intensity of laser is radiated towards each of the points.
A stacked structure includes a first die bonded over a second die. The first die has a first die area defined over a first surface. At least one first protective structure is formed over the first surface, around the first die area. At least one side of the first protective structure has at least one first extrusion part extending across a first scribe line around the protective structure. The second die has a second die area defined over a second surface. At least one second protective structure is formed over the second surface, around the second die area. At least one side of the second protective structure has at least one second extrusion part extending across a second scribe line around the protective structure, wherein the first extrusion part is connected with the second extrusion part.
A transistor, planar or non-planar (e.g., FinFET), includes T-shaped contacts to the source, drain and gate. The top portion of the T-shaped contact is wider than the bottom portion, the bottom portion complying with design rule limits. A conductor-material filled trench through a multi-layer etching stack above the transistor provides the top portions of the T-shaped contacts. Tapered spacers along inner sidewalls of the top contact portion prior to filling allow for etching a narrower bottom trench down to the gate, and to the source/drain for silicidation prior to filling.
A semiconductor device according to an embodiment of the present invention includes fuse patterns spaced apart from each other by a predetermined distance over a first interlayer insulation film; a second interlayer insulation film disposed between the fuse patterns over the first interlayer insulation film; and a capping film pattern formed over the fuse patterns and the second interlayer insulation films, the capping film pattern including a slot exposing the second interlayer insulation film.
A method for repairing an oxide layer and a method for manufacturing a semiconductor structure applying the same are provided. The method for repairing an oxide layer comprises following steps. First, a carrier having a first area and a second area is provided, wherein a repairing oxide layer is formed on the second area. Then, the carrier is attached to a substrate with an oxide layer to be repaired formed thereon, wherein the carrier and the substrate are attached to each other through the repairing oxide layer and the oxide layer to be repaired. Thereafter, the oxide layer to be repaired is bonded with the repairing oxide layer.
A robot with an integrated aligner is provided that allows for the alignment of a semiconductor wafer while the semiconductor wafer transits between multiple stations. The robot with an integrated aligner may contain a rotational wafer support configured to rotate and/or translate, one or multiple robotic arms, and a sensor. The robot may pick and place the semiconductor wafer with the robotic arm from or into a station and from or onto the rotational wafer support. The robot may be configured to rotate the semiconductor wafer into a desired orientation when the semiconductor wafer is on the rotational wafer support. The rotation of the semiconductor wafer into a desired orientation may be aided the sensor. The robot may have a positioning mechanism which moves it between different positions in a semiconductor tool.
A method includes providing a wafer and providing a first spray bar spaced a distance from the wafer. A first spray is dispensed from the first spray bar onto a first portion (e.g., half) of the wafer. Thereafter, the wafer is rotated. A second spray is dispensed from the first spray bar onto a second portion (e.g., half) of the rotated wafer. In embodiments, a plurality of spray bars are positioned above the wafer. One or more of the spray bars may be tunable in separation distance and/or angle of dispensing.
A package structure and a packaging method of wafer level chip scale package are provided. The packaging method includes: providing a carrier, and disposing a plurality of chips on the carrier; forming a plurality of adhesive layers on a surface of the corresponding chips; covering a conductive cover plate, bonding the conductive cover plate with the chips through the adhesive layers, and dividing out a plurality of packaging spaces by the conductive cover plate for disposing the chips respectively; and providing an insulation material to fill the packaging spaces through via holes on the conductive cover plate to form a first insulation structure; finally, removing the carrier.
A method and structures are provided for implementing individual integrated circuit chip attach in a three dimensional (3D) stack. A plurality of hollow copper pillars is formed, and the hollow copper pillars are coated with lead free solder using vapor deposition.
Manufacturing antennas for a dual tag by: providing a web structure having a dielectric layer between a first metal layer and a second metal layer; depositing a first resist on the first metal layer to define a radio frequency (RF) coil and a first electrode of an RF capacitor; depositing the first resist on the second metal layer to define a second electrode of the RF capacitor; depositing a second resist on the second metal layer to define connection pads for a near field antenna, wherein one of the first resist and the second resist on the second metal layer defines a far field antenna and the near field antenna; and etching the first and second metal layers to form the RF coil, the electrodes of the RF capacitor, the far field antenna, the near field antenna, and the connection pads.
There is provided a method of fabricating a semiconductor device including forming a first film on a base layer, forming a first mask pattern on the first film, the first mask pattern having mask portions arranged at a given pitch, forming first sidewall films on sidewalls of the first mask pattern by etchback of a deposited second film, removing the first mask pattern, and forming a second mask pattern composed of the first sidewall films and second sidewall films defined by etchback of a deposited third film. It is possible to form a stripe pattern with the line width and the line space thereof having the same sizes and at a pitch the same as the minimum process size determined by the photolithographic performance, thereby enabling fabrication of a semiconductor device with a high degree of integration.
Methods of evenly etching tungsten liners from high aspect ratio trenches are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor and a high flow of helium. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with tungsten coating a patterned substrate having high aspect ratio trenches. The plasmas effluents react with exposed surfaces and evenly remove tungsten from outside the trenches and on the sidewalls of the trenches. The plasma effluents pass through an ion suppression element positioned between the remote plasma and the substrate processing region. Optionally, the methods may include concurrent ion bombardment of the patterned substrate to help remove potentially thicker horizontal tungsten regions, e.g., at the bottom of the trenches or between trenches.
Multilayered stacks having layers of silicon interleaved with layers of a dielectric, such as silicon dioxide, are plasma etched with non-corrosive process gas chemistries. Etching plasmas of fluorine source gases, such as SF6 and/or NF3 typically only suitable for dielectric layers, are energized by pulsed RF to achieve high aspect ratio etching of silicon/silicon dioxide bi-layers stacks without the addition of corrosive gases, such as HBr or Cl2. In embodiments, a mask open etch and the multi-layered stack etch are performed in a same plasma processing chamber enabling a single chamber, single recipe solution for patterning such multi-layered stacks. In embodiments, 3D NAND memory cells are fabricated with memory plug and/or word line separation etches employing a fluorine-based, pulsed-RF plasma etch.
The present invention improves the performance of a semiconductor device. In a manufacturing method of a semiconductor device, sacrificial oxide films are formed over the side surface of a control gate electrode formed in a memory cell region, the surface of a cap insulating film formed in the memory cell region, and the surface of the part, which remains in a peripheral circuit region, of an insulating film. The step of forming the sacrificial oxide films includes the steps of: oxidizing the side surface of the control gate electrode by a thermal oxidation method; and oxidizing the surface of the cap insulating film and the surface of the part, which remains in the peripheral circuit region, of the insulating film by an ISSG oxidation method.
A manufacturing method of MIS (Metal Insulator Semiconductor)-type semiconductor device includes the steps of: forming a zirconium oxynitride (ZrON) layer; forming an electrode layer containing titanium nitride (TiN) on the zirconium oxynitride (ZrON) layer; and heating the electrode layer.
In a method for producing a solar cell having a substrate made of crystalline silicon, on a surface of the Si substrate, a locally defined n-doped emitter region is produced by full-surface cold coating of the surface using a P-containing coating, followed by a local laser beam-doping of P atoms from the P-containing coating, and subsequent thermal driving in of the P atoms, starting from the doping-in region.
Various methods for implanting dopant ions into a three dimensional feature of a semiconductor wafer are disclosed. The implant temperature may be varied to insure that the three dimensional feature, after implant, has a crystalline inner core, which is surrounded by an amorphized surface layer. The crystalline core provides a template from which the crystalline structure for the rest of the feature can be regrown. In some embodiments, the implant energy and the implant temperature may each be modified to achieve the desired crystalline inner core with the surrounding amorphized surface layer.
Methods for depositing a group III-V layer on a substrate are disclosed herein. In some embodiments a method includes depositing a first layer comprising at least one of a first Group III element or a first Group V element on a silicon-containing surface oriented in a <111> direction at a first temperature ranging from about 300 to about 400 degrees Celsius; and depositing a second layer comprising second Group III element and a second Group V element atop the first layer at a second temperature ranging from about 300 to about 600 degrees Celsius.
Provided herein are integration-compatible dielectric films and methods of depositing and modifying them. According to various embodiments, the methods can include deposition of flowable dielectric films targeting specific film properties and/or modification of those properties with an integration-compatible treatment process. In certain embodiments, methods of depositing and modifying flowable dielectric films having tunable wet etch rates and other properties are provided. Wet etch rates can be tuned during integration through am integration-compatible treatment process. Examples of treatment processes include plasma exposure and ultraviolet radiation exposure.
A method for preparing a semiconductor substrate with an buried insulating layer by a guttering process, includes the following steps: providing a device substrate and a supporting substrate; forming an insulating layer on a surface of the device substrate; performing a heating treatment on the device substrate, so as to form a denuded zone on the surface of the device substrate; bonding the device substrate having the insulating layer with the supporting substrate, such that the insulating layer is sandwiched between the device substrate and the supporting substrate; annealing and reinforcing a bonding interface, such that an adherence level of the bonding interface meets requirements in the following chamfering grinding, thinning and polishing processes; performing the chamfering grinding, thinning and polishing processes on the device substrate which is bonded.
An apparatus, system and method of providing that allow for the generation of reagent ions within an inner region of a mass spectrometer for use in ion-ion reactions such as PTRs and ETD using a reagent ion generator. The location where these reagent ions are generated can be as close as possible to the point of action, or the reaction zone where the reagent ion and analyte ions will interact via ion-ion reactions to cause, e.g., PTRs and/or ETD.
A method is provided for mass spectrometry. The method includes generating precursor ions from a sample; transmitting the precursor ions into a collision cell; generating product ions in the collision cell; detecting the precursor and product ions; applying modulation to one or more of the precursor ion intensity and the product ion intensity; and identifying precursor ion and product ion relationships by analyzing intensity profiles defined by the modulation.
Systems and methods are disclosed for calibrating mass spectrometers. In accordance with one implementation, a system comprises a calibrant chamber within a housing of a mass spectrometer. The system also comprises a permeation tube enclosed within the calibrant chamber, wherein the tube contains a calibrant chemical that continuously outgasses the calibrant chemical. The outgassed calibrant chemical may be introduced to the mass spectrometer for analysis. The system may also comprise a heating block to control the temperature of the calibrant chemical. The system may further comprise a valve that introduces a known amount of the calibrant chemical into the calibrant chamber. In accordance with the present disclosure, systems and methods are provided for calibrating a mass spectrometer abundance scale.
A sputtering apparatus includes a target electrode capable of mounting a target, a first support member which supports the target electrode, a magnet unit which forms a magnetic field on a surface of the target, a second support member which supports the magnet unit, and a force generation portion which is provided between the first support member and the second support member, and generates a second force in a direction opposite to a first force that acts on the second support member by an action of the magnetic field formed between the target and the magnet unit, wherein the second force has a magnitude which increases as the magnet unit comes closer to the target electrode.
A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
A multi charged particle beam writing apparatus includes an aperture member to form multiple beams, a blanking plate in which there are arranged a plurality of blankers to respectively perform blanking deflection for a corresponding beam in the multiple beams having passed through a plurality of openings of the aperture member, a blanking aperture member to block each beam having been deflected to be in OFF state by at least one of the plurality of blankers, a first grating lens, using the aperture member as gratings, to correct spherical aberration of the charged particle beam, and a correction lens configured to correct high order spherical aberration produced by the first grating lens.
A mask cover according to one embodiment of the present invention comprises a frame body having an opening at the center, a conductive earth plate installed on the frame body such that its end protrudes into the opening of the frame body, an earth pin provided on the end of the earth plate and electrically connected to the earth plate, and a conductive cover part surrounding the earth pin such that the tip end of the earth pin protrudes and a gap is present between the cover part and the earth pin.
Novel circuits for providing ride-through during unpredictable power line disturbances are disclosed in connection with low-power electronic devices. Such low-power electronics devices are typically subjected to undesirable lock-ups and reboots under momentary power line disturbances such as voltage sags, voltage swells, and other momentary line power disturbances. Diagnostics and visual indication are also integrated in the circuits to allow consumers to correlate equipment lock-up and malfunction with power disturbances, and to provide service providers with various analytics and historical data on the recorded disturbances. To reduce cost, the disclosed circuits utilize a simple DC capacitor without any additional power conditioning switches or converters. In one exemplary embodiment, the disclosed circuits are embedded inside a power line cord to provide a ride-through during the brief interval of time such power line disturbances occur.
In one embodiment, a shutter lock assembly for a circuit breaker cassette having a shutter coupled to a shutter rod is provided. The shutter lock assembly includes a lock plate assembly configured to couple to the circuit breaker cassette and an actuation mechanism having a first end coupled the lock plate assembly. The actuation mechanism is configured to actuate the lock plate assembly to lock the shutter of the circuit breaker cassette in a closed position.
A rotor for an electric switch is disclosed. In an embodiment, the rotor includes a rotor housing and a rotatably mounted contact bridge, which exhibits two movable contacts, wherein, by the rotation of the rotor, the two movable contacts can interact with two fixed contacts of an electric switch for closing or opening a circuit. The rotatably mounted contact bridge in the rotor housing is movably mounted in a direction perpendicular to the direction of the contact bridge in its closed position.
An electrical switching device (1) which comprises at least one double breaking pole provided with two fixed contacts (3, 4) that cooperate with two moving contacts (5, 6) arranged so as to move in a breaking plane (P) and define, with every fixed contact, a breaking zone. The device comprises a permanent magnet (11, 12) housed in an insulating holder arranged in the immediate environment, next to each breaking zone, symmetrically with respect to the breaking plane and oriented so as to generate a magnetic excitation vector parallel to the breaking plane (P) so that the induced electromagnetic force (FE) moves and stretches every electric arc (E1, E2), generated when opening the electrical circuit, in a direction perpendicular to the breaking plane (P), leading to the extinction of the electric arc regardless of the polarity of the magnet and/or of the current.
A method of producing an alkaline single ion conductor with high conductivity includes: a) providing a hydrocarbon oligomer or polymer having immobilized acidic substituent groups selected from the group consisting of a sulfonic acid group, sulfamide group, a phosphonic acid group, or a carboxy group, in its alkaline ion form wherein at least a part of the acidic protons of the substituent groups have been exchanged against alkali cations, and b) solvating the hydrocarbon oligomer or polymer of step a) in an aprotic polar solvent for a sufficient time to effect a solvent uptake of at least 5% by weight and to obtain a solvated product, wherein the molar ratio of solvent/alkaline cation is 1:1 to 10,000:1, and which solvated product has a conductivity of at least 10−5 S/cm at room temperature (24° C.).
A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.
A resonance-type non-contact power supply system includes a power-transmission-side metal shield to cover an area around a primary coil and a primary resonance coil, and a power-receiving-side metal shield to cover an area around a secondary coil and a secondary resonance coil, and when charging is performed, the power-transmission-side metal shield and the power-receiving-side metal shield are connected with a case connector to be at the same potential.
The present invention discloses a circuit board, including a substrate and a magnetic core, where the magnetic core is embedded into the substrate, at least one turn of a winding conductor wound around the magnetic core is arranged on the substrate, each turn of the winding conductor includes a first end-surface conductor and a second end-surface conductor that are separately arranged on two ends of the magnetic core, and each turn of the winding conductor further includes a first side-surface conductor that penetrates through the magnetic core from an inner side of the magnetic core and a second side-surface conductor that penetrates through the magnetic core from an outer side of the magnetic core. The circuit board and the power conversion apparatus having the circuit board provided by the present invention, achieve larger inductance, save materials, and reduce cost for fabricating a power conversion apparatus.
A differential signal cable is composed of two inner conductors, an insulator, which covers the two inner conductors separately or together, and an outer conductor, which covers a circumference of the insulator. When measured in a cable length of 1 m, an effective capacitance difference ΔX represented by Formula (1) below is not greater than 0.2 percent of an average value C of capacitances of the two inner conductors, ΔX=ΔC+ΔL/Z02 (1), where ΔC is a difference in capacitance between the two inner conductors, ΔL is a difference in inductance between the two inner conductors, and Z0 is a reference impedance (50 ohms).
An umbilical assembly for supplying power to subsea equipment includes an electrical conductor to convey an electrical current to the subsea equipment. An insulator surrounds the conductor. A support member is positioned between the insulator and the conductor. The support member has either non-magnetic properties or low-magnetic properties because of its material composition. The support member is adapted to connect to a structure at the surface of the sea. The support member supports the weight of the conductor. The supporting of the weight of the conductor by the support member can be to reduce creep typically associated with the conductor supporting its own weight. The support member can be used to hermetically seal the conductor and prevent hydrogen migration along the conductor.
An electrically conductive film has an electrically conductive layer on at least one side, which is a thermoplastic resin film in which the electrically conductive layer contains a carbon nanotube (A), a carbon nanotube dispersant (B) and a binder resin (C), the total of contents of (A), (B) and (C) in the electrically conductive layer is 90% by weight or more relative to the entire electrically conductive layer, and weight rates of (A), (B) and (C) satisfy the following, and a weight ratio of (B) and (A) ((B)/(A)) is 0.5 or more and 15.0 or less: (A) 1.0 to 40.0% by weight, (B) 0.5 to 90.0% by weight, and (C) 4.0 to 98.5% by weight (provided that the total of contents of (A), (B) and (C) is let to be 100% by weight).
Disclosed herein is a polymeric material comprising a conductive polymer substantially homogeneously distributed within a hydrogel. Also disclosed are methods for making the polymeric material and uses for the polymeric material.
A positive electrode active material for a lithium ion secondary battery having high discharge energy and capable of suppressing capacity drop with cycles and a secondary battery using the same are provided at lower cost. A positive electrode active material for a secondary battery according to a first aspect of the exemplary embodiment is represented by the following formula (I): Lia(FexNiyMn2-x-y)O4 (I) where 0.2
Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
A semiconductor memory apparatus includes a CAS latency setting circuit configured to change an initially-set CAS latency value in response to control signal pulses which are sequentially applied, during a test mode without changing settings of a mode register set during each test.
A first packet of a flow received onto an OpenFlow switch causes a flow entry to be added to a flow table, but the associated action is to perform a TCAM lookup. A request is sent to an OpenFlow controller. A response OpenFlow message indicates an action. The response passes through a special dedicated egress fast-path such that the action is applied and the first packet is injected into the main data output path of the switch. A TCAM entry is also added that indicates the action. A second packet of the flow is then received and a flow table lookup causes a TCAM lookup, which indicates the action. The action is applied to the second packet, the packet is output from the switch, and the lookup table is updated so the flow entry will thereafter directly indicate the action. Subsequent packets of the flow do not involve TCAM lookups.
A nonvolatile memory device includes a buffer memory, a read circuit configured to read first data stored in the buffer memory in a first read operation, and a write circuit configured to write second data in the buffer memory in a first write operation, wherein the first write operation is performed when a first internal write command is generated during the first read operation.
In a semiconductor memory device, static memory cells are arranged in rows and columns, word lines correspond to respective memory cell rows, and word line drivers drive correspond to word lines. Cell power supply lines correspond to respective memory cell columns and are coupled to cell power supply nodes of a memory cell in a corresponding column. Down power supply lines are arranged corresponding to respective memory cell columns, maintained at ground voltage in data reading and rendered electrically floating in data writing. Write assist elements are arranged corresponding to the cell power supply lines, and according to a write column instruction signal for stopping supply of a cell power supply voltage to the cell power supply line in a selected column, and for coupling the cell power supply line arranged corresponding to the selected column at least to the down power supply line on the corresponding column.
Some of the embodiments of the present disclosure provide a system comprising a memory configured to operate in one of a plurality of states; a phase locked loop (PLL) configured to (i) receive a first clock signal, and (ii) based on the first clock signal and a state at which the memory operates, selectively generate a second clock signal; and a clock selection module configured to, based on the state at which the memory operates, selectively provide one of (i) the first clock signal and (ii) the second clock signal to the memory.
In one embodiment, a controller comprises logic to identify a first plurality of cells in a row of spin transfer torque (STT) memory which are to be set to a parallel state and a second plurality of cells in the row of the STT memory which are to be set to an anti-parallel state, mask write operations to the second plurality of cells in the row, set the first plurality of cells to a parallel state, mask write operations to the first plurality of cells in the row, and set the second plurality of cells to an anti-parallel state.
A method of reading data from a plurality of bits in a spin-torque magnetoresistive memory array includes performing one or more referenced read operations of the bits, and performing a self-referenced read operation, for example, a destructive self-referenced read operation, of any of the bits not successfully read by the referenced read operation. The referenced read operations can be initiated at the same time or prior to that of the destructive self-referenced read operation.
According to one embodiment, a magnetic memory includes a cell array includes a plurality of memory cells, each memory cell including a magnetoresistive effect element; and a read circuit to read data from a memory cell selected based on an address signal from among the memory cells. The read circuit selects one determination level from among a plurality of determination levels corresponding to a position of a magnetoresistive effect element in the cell array and uses the selected determination level to perform reading of the data.
Methods and apparatuses for communicating information are described. In some embodiments, a first integrated circuit (IC) provides a clock signal and a data signal to a second IC, wherein the data bits of the data signal are timed according to the clock signal, and wherein the frequency of the clock signal is capable of being changed even when the data signal is valid.
A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A first memory device includes a first set of one or more control registers storing a first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the first memory device, and a second memory device includes a second set of one or more control registers storing a second ODT value different from the first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the second memory device.
A memory device that, in certain embodiments, includes a plurality of memory elements connected to a bit-line and a delta-sigma modulator with a digital output and an analog input, which may be connected to the bit-line. In some embodiments, the delta-sigma modulator includes a circuit with first and second inputs and an output. The circuit is configured to combine (add or subtract) input signals. The first input may be connected to the analog input. The delta-sigma modulator may also include an integrator connected to the output of the circuit, an analog-to-digital converter with an input connected to an output of the integrator and an output connected to the digital output, and a digital-to-analog converter with an input connected to the output of the analog-to-digital converter and an output connected to the second input of the circuit.
Integrated circuits may include partial reconfiguration (PR) circuitry for reconfiguring only a portion of a memory array. In some applications, partial reconfiguration may be performed during user mode. During partial reconfiguration, write assist techniques such as varying the power supply voltage may be applied to help increase write margin, but doing so can potentially affect the performance of in-operation pass gates that are being controlled by the memory array during user mode. In one suitable arrangement, ground power supply voltage write assist techniques may be implemented on memory cells that include p-channel access transistors and that are used to control n-channel pass transistors. In another suitable arrangement, positive power supply voltage write assist techniques may be implemented on memory cells that include n-channel access transistors and that are used to control p-channel pass transistors.
Methods and systems to provide a multi-Vcc environment, such as to selectively boost an operating voltage of a logic block and/or provide a level-shifted control to the logic block. A multi-Vcc environment may be implemented to isolate a Vmin-limiting logic block from a single-Vcc environment, such as to reduce Vmin and/or improve energy efficiency in the single-Vcc environment. The logic block may include bit cells of a register file, a low-level processor cache, and/or other memory system. A cell Vcc may be boosted during a read mode and/or write wordlines (WWLs) and/or read wordlines (RWLs) may be asserted with boost. A wordline decoder may include a voltage level shifter with differential split-level logic, and a dynamic NAND, which may include NAND logic, a keeper circuit, and logic to delay a keeper control based on a delay of the level shifter to reduce contention during an initial NAND evaluation phase.
An optical element holder comprises a placement face on which an optical element is placed, the placement face obtained using one face of a sheet of metal; a positioning wall used for positioning the optical element placed on the placement face, the positioning wall being a stepped portion obtained by folding of the sheet of metal; and a spring section, which is a portion obtained by further folding of part of the portion folded over in order to obtain the positioning wall.
Provided herein are block copolymer thin film structures and methods of fabrication. Aspects described herein include methods of directed self-assembly of block copolymers on patterns using solvent annealing, and the resulting thin films, structures, media or other compositions. According to various embodiments, solvent annealing is used direct the assembly of block copolymers on chemical patterns to achieve high degrees of pattern perfection, placement of features at the precision of the lithographic tool used to make the chemical pattern, improved dimensional control of features, improved line edge and line width roughness, and resolution enhancement by factors of two to four or greater.
Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
An apparatus for magnetic recording having a barrier layer. One embodiment includes a magnetic head having an array of sensors, each of the sensors having a media facing surface. A barrier layer is positioned above at least the media facing surfaces of the sensors. The barrier layer includes at least one at least partially polycrystalline layer.
A magnetic head according to one embodiment includes outer portions each having a tape bearing surface and an array of transducers selected from a group consisting of readers and writers; a central portion positioned between the outer portions, the central portion having a tape bearing surface and an array of transducers selected from a group consisting of readers and writers; wherein outer edges of the tape bearing surfaces of the outer portions are non-skiving, wherein an inner edge of each of the tape bearing surfaces of the outer portions is adapted for skiving air from the magnetic medium when the magnetic medium travels in a direction from the central portion towards the respective outer portion.
A perpendicular magnetic recording (PMR) writer is disclosed wherein a 19-24 kG hot seed layer is formed between a gap layer and a 10-19 kG magnetic layer in a partially wrapped around shield structure involving side shields and trailing shield to reduce internal flux shunting, improve writability, and enable side gap and write gap dimensions 5-10 nm smaller than typical writers for conventional and shingled magnetic recording. Side shields have a bottom surface formed along a plane that is parallel to the main pole leading edge, and at a down-track distance from 50 nm above to 100 nm below the leading edge. Cross-track and down-track field gradients are improved by fully coupling the trailing shield and side shield hot seed layers. Also, side shield hot seed layers have a height <0.15 micron and less than the 10-19 kG side shield layer height to reduce internal flux shunting.
Systems and methods for signal noise reduction. An input digital signal may be partitioned into a series of adjacent segments. The adjacent segments may be converted to a frequency domain representation. A particular spectral component of a particular segment may be compared to a related spectral component of a first segment adjacent the particular segment, and to a related spectral component of a second segment adjacent the particular segment. The particular spectral component may be modified upon a magnitude value of the particular spectral component satisfying at least one of a predetermined set of conditions.
Provided is a method and apparatus for generating a side information bitstream of a multi-object audio signal. The apparatus for generating a side information bitstream of a multi-object audio signal includes a spatial cue information input unit configured to receive spatial cue information generated in an encoder of the multi-object audio signal, a preset information input unit configured to receive preset information for the multi-object audio signal, and a side information bitstream generator configured to generate the side information bitstream based on the spatial cue information and the preset information. The side information bitstream includes a header region and a frame region, and the preset information is included in the frame region.
A method and apparatus of suppressing a vocoder noise are provided. The method includes receiving from a channel decoder a vocoder frame and first information, the first information indicating whether the vocoder frame has an error, generating speech data by performing voice decoding on the vocoder frame, determining whether a tonal noise has been detected in the speech data, if the first information indicates that the vocoder frame has an error, and attenuating the volume of the speech data and outputting the volume-attenuated speech data through a speaker, upon detection of the tonal noise in the speech data.
According to an illustrative embodiment, an information processing apparatus is provided. The information processing apparatus includes a communication device to receive plural pieces of tag information corresponding to respective positions within a target area, the target area having a position defined by the position of the apparatus; and an output device to output a plurality of sounds such that for each sound at least a portion of the sound overlaps with at least a portion of another of the sounds, each of the sounds being indicative of a respective piece of tag information.
Methods, systems, and apparatus are described that receive audio data for an utterance. Association data is accessed that indicates associations between data corresponding to uncorrupted audio segments, and data corresponding to corrupted versions of the uncorrupted audio segments, where the associations are determined before receiving the audio data for the utterance. Using the association data and the received audio data for the utterance, data corresponding to at least one uncorrupted audio segment is selected. A transcription of the utterance is determined based on the selected data corresponding to the at least one uncorrupted audio segment.
Query history expansion may be provided. Upon receiving a spoken query from a user, an adapted language model may be applied to convert the spoken query to text. The adapted language model may comprise a plurality of queries interpolated from the user's previous queries and queries associated with other users. The spoken query may be executed and the results of the spoken query may be provided to the user.
A handheld electronic device including a connection interface, a voltage supply unit and a baseband circuit is provided. When headphones are connected to the handheld electronic device, the baseband circuit can determine the type of the headphones by controlling the operation of the voltage supply unit. Furthermore, when the headphones are noise-canceling headphones, the baseband circuit can control the operation of the voltage supply unit to provide operation power to the noise-canceling headphones. In addition, corresponding noise-canceling headphones including a connection interface, at least one switch circuit, a switch control unit, a communication microphone, two speakers, a noise-canceling circuit and two noise-canceling microphones is also provided.
Techniques are described for automatically selecting musical content for playback based on an initial “seed” of music selected by a user in a way that seamlessly extends the user's listening experience. The initially selected seed music might be, for example, an album or a playlist. Music that follows the seed music is algorithmically selected to match the music selected by the user.
The present invention disclosed an apparatus and method for capturing directly the dynamic motion of a finger to create digital music with enhanced expressive qualities through the use of a capacitance sensor that is configured to continuously produce an analog output of capacitance change upon the approaching but not yet touching, touching and leaving the key or space between keys by a finger.
A bridge assembly having a saddle plate with a first aperture, and a tremolo block with a second aperture aligned with the first aperture. The tremolo block is attached to the saddle plate, and it has a plurality of arcuate string apertures therethrough configured to receive the strings therein while maintaining contact between the string and the tremolo block along substantially the entire length of the respective string aperture.
A multi-projection system includes a plurality of projectors for projecting divided images onto projection positions to project an image composed of the divided images, a plurality of image capturing devices to capture the divided images and surrounding areas of the divided images, a projection position identification unit to identify projection positions of the projectors based on captured image information acquired by capturing position discriminating images and the surrounding areas, a receiving unit to receive a signal from each of the projectors, a number identification unit to identify the number of the projectors based on a reception result by the receiving unit, a determination unit to determine the position discriminating images to be projected by the projectors based on an identification result of the number identification unit, and a projection processing execution unit to instruct projection of the position discriminating images determined by the determination unit to the projectors.
A display device includes a display panel, the display panel including a plurality of pixels that, during one frame, receive a first voltage transmitted through a data line and a second voltage having a higher level than the first voltage, receive and store a third voltage of a first image data signal corresponding to a current frame, and emit light by driving current for a fourth voltage corresponding to a second image data signal corresponding to a previous frame, wherein, of one frame, a first period for storing the third voltage and a second period for emitting light by the driving current for the fourth voltage overlap each other.
Image display devices that can eliminate image deterioration that occurs due to a pixel scanning sequence are provided. A detection section identifies a moving region contained in an image corresponding to an input image signal composed of a plurality of frames and detects a moving distance and a moving direction for and in which the moving region moves. A correction section corrects the image signal based on a detected result of the detection section and the scanning sequence in which individual pixels in the moving region are scanned. A drive section scans the plurality of pixels in the scanning sequence based on a corrected image signal that is an image signal corrected by the correction section and draws a corrected image corresponding to the corrected image signal.
A gate driving circuit includes a first input terminal, a second input terminal, a third input terminal, an output terminal, a first transistor, a second transistor, a third transistor, and a capacitor. The first terminal of the first transistor is coupled to the first input terminal. The control terminal of the first transistor is coupled to the second input terminal. The first terminal of the second transistor is coupled to the third input terminal. The control terminal of the second transistor is coupled to the second terminal of the first transistor. The second terminal of the second transistor is coupled to the output terminal. The first terminal of the third transistor is coupled to the output terminal. The second terminal of the third transistor is coupled to ground terminal. The capacitor is coupled between the control terminal of the second transistor and the output terminal.
Disclosed are an LCD device and a driving method thereof. The LCD device includes at least one source driving ICs configured to drive a plurality of data lines formed in a panel, a timing controller configured to generate a power control signal used to change a level of a driving voltage applied to the source driving ICs according to a pattern of an image output to the panel, and a driving voltage generator configured to generate a first driving voltage or a second driving voltage according to the power control signal to drive the source driving ICs. The first and second driving voltages have different levels.
The present invention discloses an array substrate. The data line repair structure of the array substrate includes repair line, control line and a plurality of switch elements. One end of each data line is connected to shorting bar during shorting bar test stage, and the other end is connected to the repair line through a switch element. The control terminal of switch element is connected to control line, input terminal is connected to one end of repair line and the output terminal is connected to a data line. The other end of the repair line is connected to shorting bar during shorting bar test stage. The present invention further discloses a PSVA liquid crystal display panel and manufacturing method thereof. As such, the present invention can improve PSVA process yield rate.
The purpose of the present invention is to provide a three dimensional image display device capable of preventing the generation of crosstalk. The three dimensional image display device according to the present invention includes a display panel having a plurality of pixels, a backlight capable of partially illuminating the display panel, and a drive circuit for driving the display panel and the backlight. The drive circuit causes the display panel to display a three dimensional image by synchronizing the scanning of the display panel with the scanning of the partial illumination light (Lz) of the backlight.
A method of driving an electrowetting display device having at least one display element for displaying a display effect. The method determines a change in the display effect. Depending on the change the display element may be DC driven or AC driven.
The present invention is directed to a driving method for a display having a binary color system, which method can effectively improve the performance of an electrophoretic display. The method comprises applying a series of driving voltages to said pixel and the accumulated voltage integrated over a period of time from the first image to the last image is 0 (zero) or substantially 0 (zero) volt•msec.
A display unit includes: a display section including a plurality of unit pixels; and a drive section configured to perform a first drive, a second drive, and a third drive on each of the unit pixels in this order, in which each of the first drive and the second drive includes an initialization drive, a writing drive of a pixel voltage, and a light emission drive based on the pixel voltage written by the writing drive, a part of a series of the initialization drive, the writing drive, and the light emission drive differs between the first drive and the second drive, and the third drive includes a light emission drive based on the pixel voltage written by the writing drive in the second drive.
Plural pixel circuits of a display device each include: a drive transistor having drain or source connected to a first power source voltage; a first capacitive element having a first electrode connected to a gate of the drive transistor and a second electrode connected to the source of the drive transistor; a second capacitive element having a first electrode connected to the second electrode of the first capacitive element and a second electrode directly connected to a data line that transmits a voltage corresponding to a light-emitting luminance; a first switching element that switches between conduction and non-conduction between the gate of the drive transistor and a fixed reference voltage; and a light-emitting device having a first electrode connected to source or drain of the drive transistor and a second electrode connected to a second power source voltage.
A display device includes: a plurality of arranged pixels, each of which includes an electro-optical component, a write-in transistor writing an image signal in a pixel, a maintenance capacity maintaining the image signal written by the write-in transistor, and a driving transistor driving the electro-optical component based on the image signal maintained by the maintenance capacity, wherein the write-in transistor has a plurality of gates, the gate of the driving transistor side among the plurality of gates has a structure in which a channel region is sandwiched between a first gate electrode and a second gate electrode, and the width of the channel region of the gate of the driving transistor side is narrower than the width of the channel region of other gates.
An apparatus and method for compensating color characteristics in individual display devices that each include a display unit including a plurality of pixels to display images according to compensated image data signals, a test data input section to transmit a predetermined test image data signal to the pixels to display a test image, a luminance measuring unit to receive luminance information from the display unit displaying the test image and determine actual luminance ratios of a first color, a second color, and a third color from the received luminance information, a compensation ratio determiner to calculate a compensation ratio from both the actual and reference luminance ratios of each color and a data compensator to generate the compensated image data signals by adjusting external input video signals according to the compensation ratio.
A display device according to the present invention includes: a display unit including a plurality of pixels coupled to a plurality of scan lines; a plurality of scan driving blocks coupled to the plurality of scan lines and adapted to apply a plurality of scan signals; an electrostatic discharge (ESD) unit adapted to protect the plurality of scan driving blocks from static charges; an AC power source unit for supplying a first power source voltage of which a level is changed between a logic high level and a logic low level, to the plurality of scan driving blocks through a first power source voltage wire during a pixel test of the plurality of pixels; and a DC power source unit for supplying a second power source voltage of the logic high level to the ESD unit through a second power source voltage wire.
Disclosed are a lamp capable of displaying an emblem and a vehicle lamp apparatus using the same. The lamp includes a light source module and an optical member spaced apart from the light source module by a predetermined distance. The optical member includes at least one plate including a bottom surface adjacent to the light source module and a top surface opposite the bottom surface, a first pattern disposed at the top surface of the plate to display a predetermined emblem, and a second pattern disposed at the top surface of the plate excluding the first pattern to condense light incident from the light source module.
A marketing sign is constructed of a sheet material and includes at least one breakaway section coupled to a main section by at least one score. The main section includes a free portion, a base portion and connecting portion. The free portion includes a price piece and a balloon piece coupled to the price piece at a fold. The base portion is configured to couple with a product display structure after the main section is detached from the break-away section at the at least one score. The connecting bend line couples the free portion to the base portion and has a first end located a space distance from a right side edge of the sheet material.
This invention relates to a device and process for determining an airport runway state (12), as well as for using such data. The process includes: acquisition (A1) of measurement data pertaining to at least one physical size of an aircraft (10), during the take off or landing roll phase of the aircraft on said runway; obtaining (A2), using the data acquired, a plurality of estimated adhesion values “μ” of the runway, corresponding to a respective plurality of taxiing moments of the aircraft; obtaining (A3), using the data acquired, a slip ratio value “s” of at least one of the aircraft's wheels for each said taxiing moment, so as to obtain (A4) a plurality of coupled data points [s,μ]; and determination of a runway state by comparing (A5.2) the coupled data points [s,μ] profile with at least one predetermined profile.
In device 1 including rear view wide angle camera 11, and ECU 20 and display 30 displaying rearward image captured by the camera 11, display control section 25 of the ECU 20 and the display 30 divides the image into right and left rear lateral screens 204 and central rearward screen 202 for display, driver can determine which place is displayed. The section 25 and the display 30 do not display the same image on the screens 204, 202, the driver can understand the distance between object in the image and host vehicle 100. The section 25 performs distortion correction of correcting distortion of the image displayed on the screens 204, the driver can see the image viewable due to the distortion correction. The section 25 forms the screens 204 in shape based on the distortion correction, the driver can understand an approaching position of the object in the image.
An approach is provided for determining departure time information for at least one vehicle, wherein the departure time is determined prior to an arrival of the at least one vehicle at the at least one parking facility. The approach also involves determining other departure time information for one or more other vehicles parked at the at least one parking facility. The approach further involves processing and/or facilitating a processing of the departure time information and/or the other departure time information to determine at least one parking location for that at least one vehicle at the least one parking facility.
Disclosed herein is a monitoring device comprising a sensor or probe for measuring an environmental condition inside a building, a display unit for displaying the level of the environmental condition, and a communication device that transmits text messages if the level of the environmental condition passes a predetermined threshold level.
The present invention is related to systems and methods for identifying and reporting a crisis status. In at least one embodiment, the system comprises a central server; an administrative work station communicably coupled to the central server, wherein the administrative work station is accessible only by an authorized administrator; a database communicably coupled to the central server, the database including a floor plan of the area, wherein the database is accessible and modifiable by the authorized administrator at the administrative work station; and a remote device at a particular location in the area, the remote device communicably coupled to the central server, the remote device capable of communicating securely to the database the particular location of the remote device and the crisis status of the particular location.
The present invention relates to an anti-crime system using an RF dongle. More particularly, the present invention relates to an anti-crime system using an RF dongle, in which a detection sensor is mounted on a security window, a window or a door of a balcony, and the sensed signal acquired from the detection sensor is transmitted to a server by an Internet sharer using RF communication so as to inform the relevant persons in charge about the current state via the terminals of the relevant persons.
A security device may include an attachment assembly configured to affix the security device to an object, a locking assembly configured to lockably secure the attachment assembly and configured to transition between at least a locked state and an unlocked state, a transformer configured to drive an alarm assembly to generate an alarm, and processing circuitry. The transformer may be further configured to operate as a wireless receiver to receive a remotely transmitted wireless signal. The processing circuitry may be configured to monitor an output of the transformer to determine whether the wireless signal has been received via the transformer, and selectively activate the transformer to drive the alarm assembly to generate the alarm.
Automated banking machines operate to cause financial transfers responsive to data read from data bearing records. Each of the automated banking machines includes a card reader that is operative to read data from user cards corresponding to financial accounts. Transactions are authorized responsive at least in part to correspondence between card data and stored data corresponding to authorized users. Entities responsible for operating the automated banking machines receive messages that include information or update code items for software or firmware usable in the banking machines for which they have operational responsibility.
An automated banking machine that includes a check acceptor that is operative to receive checks from authorized machine users. The check acceptor is operable to continuously move a received check along its transport path while simultaneously rotationally orienting the check into alignment with the transport path. A check determined not to have at least one property of an acceptable check is returned to the machine user. Acceptable checks are processed and stored in the machine.
A gaming system includes a cascading symbol or tumbling reel game which utilizes one or more different classes or sets of symbols. Each class or set of symbols includes one or more related symbols. If a symbol class triggering event occurs in association with a class or set of symbols, the gaming system removes each of the related symbols in that class of symbols which are displayed at symbol display positions of one or more symbol display position matrices.
A wagering game system and its operations are described herein. In some embodiments, the operations can include providing gaming content for use during a bingo game, where the gaming content includes a representation of a bingo game card that includes card identifiers, arranged in a distinct pattern, which are usable during the bingo game to track game identifiers, with equivalent values, when drawn during the bingo game. The operations can further include selecting a card identifier, in response to user input, which indicates a user prediction that a corresponding game identifier, with an equivalent value, will be drawn during the bingo game. The operations can further include placing a bet for a secondary wagering game on the selecting of the card identifier, detecting a draw of the corresponding game identifier during the bingo game, and using the draw of the game identifier as an outcome for the bet.
A method for allowing players to play a bingo-type game with a gaming system is described herein. The method includes displaying the bingo-type game on the display device, randomly selecting a plurality of player symbols, randomly selecting a plurality of game symbols, determining if each one of the plurality of game symbols matches a corresponding one of the plurality of player symbols, and determining a game outcome of the bingo-type game as a function of the matched player symbols. The method also includes determining if a triggering condition occurs in the game outcome and responsively providing an award to the player if the triggering condition occurs. The triggering condition is defined as a path extending between the origin symbol and the destination symbol and including at least one matched player symbol.
Systems and methods for processing software objects in connection with a map-based game are disclosed. Embodiments of the presently disclosed invention provide players with the ability to participate in a map-based game that offers prizes or discovery in the form of software applications upon his or her selection of one or more grid units in a map-based game. For example, in a map-based game, one or more of the units on the gameboard may have embedded therein one or more Apps that, when selected by the player, cause the application to be executed, unlocking aspects or features of the map-based game or providing players with entertainment, advertisements, promotional information, education, social networking, games, or utility functions.
A pharmaceutical dispensing system includes: a frame having first and second opposed sides; a plurality of bins configured to house pharmaceutical tablets, each of the bins being accessible from the first side of the frame for replenishment of pharmaceutical tablets; and a plurality of chutes, each of the chutes connected to and associated with a respective one of the plurality of bins, each of the chutes being accessible from the second side of the frame for dispensing of pharmaceutical tablets. A system of this configuration can facilitate operation by physically separating replenishment tasks from dispensing tasks, thereby enabling these tasks to be performed simultaneously.
A base unit installed in a vehicle including a vehicle communication module for communicating with a controller, the controller monitoring at least one operating parameter of the vehicle. The base unit also includes a transceiver and a processor configured to receive the at least one operating parameter of the vehicle from the vehicle communication module and process the at least one operating parameter to detect an event, wherein the event is used for driver compliance logging. The transceiver is configured to transmit the event to at least one external device.
Systems and methods are provided for modifying a virtual model of a physical structure with additional 3D data obtained from the physical structure to provide a modified virtual model.
Aspects of the disclosure relate to generating a digital terrain model (“DTM”) from a digital surface model (“DSM”). For example, the DSM may include a plurality pixels associated with coordinate information and elevation information, including the elevation of features such as buildings and large vegetation. Initially, a set of vertices defining a polygon may be identified. A set of seed pixels, corresponding to points of the DSM of “bare” earth (without buildings or large vegetation) may also be identified. These may be the same or different from the set of vertices. An adaptive flood filler algorithm is used to evaluate the pixels of the polygon starting with the seed pixels. This process validates or invalidates the state of the pixels. The result is an approximation of a DTM for the polygon.
Simulating performance of a virtual camera operating inside a 3-D environment having scenes generated for motion pictures and video games including: tracking position and orientation of an object within a physical volume of space; placing the virtual camera within the virtual 3-D environment corresponding to the tracked position of the object within the physical volume of space; capturing shots within a field of view of the virtual camera, wherein the field of view of the virtual camera is measured in accordance with the tracked position and orientation of the object; and displaying the captured shots of the 3-D environment captured with the virtual camera.
An image creation method, includes: first obtaining a subject image including a subject region; second obtaining skeleton information related to a skeleton of a subject in the subject image obtained by the first obtaining; specifying, based on the skeleton information obtained by the second obtaining, color information of a contour portion of the subject region; and creating a back-side-image, based on the color information of the contour portion of the subject region specified by the specifying, by drawing a subject correspondent region of the back-side image showing a back side of the subject in a pseudo manner.
According to one embodiment of the present invention, a computer-implemented method comprises generating a plurality of charts to visually represent a multivariate data set, mapping variables within the multivariate data set to components of each chart, calculating a score value for each chart based on a plurality of factors, and presenting one or more of the plurality of charts based on corresponding score value.
A device for automatically determining the contours of heights of a relief includes an image receiving unit configured to receive an image of a predetermined geographical area. The image includes altimetric data. A background surface elimination unit eliminates the background surface of the relief. The background surface illustrates gradual variations in one or more altitudes of the geographical area. A top-hat algorithm having an adjustable structuring element can be used. A thresholding unit generates a binary image which only contains those reliefs having heights above a threshold value. An extracting unit extracts rough contours of heights of the relief from the binary image. A simplifying unit obtains a set of polygons by simplifying the rough contours. The polygons illustrate contours of the heights of the relief of the geographical area.
A method, non-transitory computer readable medium, and apparatus for enhancing an edge of a non-saturated object are disclosed. For example, the method detects a plurality of transition pixels, determines a gray value for one or more of the plurality of transition pixels is greater than a threshold value, identifies one or more edge pixels from the one or more of the plurality of transition pixels that has the gray value greater than the threshold value when the one or more of the plurality of transition pixels is not within an input block of pixels having all of the pixels in the input block with a respective gray value greater than the threshold and applies an edge enhancement to each one of a plurality of input blocks containing the one or more edge pixels.
A method and apparatus for processing a gray image, including: calculating a mean value and a standard difference of each edge pixel needing processing in an original gray image, and determining a predefined noise variance of each edge pixel according to the mean value and the standard difference; performing two-dimensional discrete cosine transform on an original gray image of a first adjacent area of each edge pixel; performing Wiener filtering on the two-dimensional discrete cosine transformed image data according to the noise variance; performing discrete cosine inverse transform on the two-dimensional Wiener filtered image data to obtain a filtered gray image of the first adjacent area; and extracting a filtered pixel value of each edge pixel from the filtered gray image of the first adjacent area, and obtaining a processed pixel value of each edge pixel by performing weighted summation on the filtered pixel value and an original pixel value.
A method for performing head tracking is disclosed. The method includes receiving an input of an image including a facial area and tracking a movement of the facial area, including if a rotation angle of a facial area is within a predetermined angle range from a front side, searching for a location change of feature points within a facial area through a comparison with a template learned in advance and if a rotation angle of a facial area is beyond a predetermined angle range from a front side, searching for a location change of feature points within a facial area through a comparison with a facial area image frame previously inputted.
A first image and a second image obtained by imaging the same subject with different types of modalities are obtained. The first image is deformed, and similarity between the deformed first image and the second image is evaluated by an evaluation function that evaluates correlation between distributions of corresponding pixel values of the two images to estimate an image deformation amount of the first image. Based on the estimated image deformation amount, a deformed image of the first image is generated. The evaluation function includes a term representing a measure of correlation between a pixel value of the deformed first image and a corresponding pixel value of the second image, wherein the term evaluates the correlation based on probability information that indicates a probability of each combination of corresponding pixel values of the first image and the second image.
An image analysis apparatus detects a periodic signal corresponding to an arrangement of a grid, which is required to reduce scattered radiation components from an object, from an image obtained by radiation imaging using the grid. The image analysis apparatus includes: a setting unit configured to set a plurality of regions on the image; an obtaining unit configured to obtain statistic information of pixel values corresponding to each of the plurality of regions of the image based on the image; a selection unit configured to select at least one measurement region from the plurality of regions based on the statistic information; and a detection unit configured to detect the periodic signal using image data of the selected measurement region.
A graphics processing unit (GPU) includes an indexed streamout buffer. The indexed streamout buffer is configured to: receive vertex data of a primitive, and determine if any entries in a reuse table of the indexed streamout buffer reference the vertex data. Responsive to determining that an entry of in the reuse table references the vertex data, the buffer is further configured to: generate an index that references the vertex data, store the index in the buffer, and store a reference to the index in the reuse table. Responsive to determining that an entry does not reference the vertex data, the indexed streamout buffer is configured to: store the vertex data in the buffer, generate an index that references the vertex data, store the index in the buffer, and store a reference to the index in the reuse table.
An exemplary method includes a computer-implemented trip playlist management system receiving data representative of a travel itinerary for a trip and generating, based on the data representative of the travel itinerary, a recommended trip playlist for the trip, the recommended trip playlist comprising a set of one or more media programs selected and arranged relative to a timeline for the trip. In certain examples, the computer-implemented trip playlist management system provides a trip playlist graphical user interface for display, the trip playlist graphical user interface comprising a visual representation of the recommended trip playlist. Corresponding methods and systems are also disclosed.
Systems and methods for insurance claims processing in an insurance industry are described. The method comprises combining extracted claims data from one or more data sources to obtain a consolidated claims record and removing noise from text data of the consolidated claims record to obtain a claim dataset. The claims data comprises a plurality of claims. Further, ascertaining one or more suspicion indicators in the plurality of claims based on an analytical technique. Further, assigning a score to each of the plurality of claims based on at least one scoring rule. The score is an indicative of a level of suspicion of a claim. Furthermore, detecting at least one of insurance claims fraud and subrogation potential claims based on the score assigned to each of the plurality of claims.
A method of using an information element to access functionality on a computing device, the method comprising: scanning the information element to retrieve data related to the information element; manipulating a scannable aspect of the information element; re-scanning the information element; wherein manipulation of the scannable aspect of the information element triggers different functionality in the computing device when the information element is re-scanned.
Some embodiments of a system and a method to verify compliance in a disconnected system have been presented. For instance, a provider server can collect system management server state hashes from a set of computer systems in transactions not directly related to billing between the provider server and the computer systems. The computer systems may be coupled to a system management server that is within an internal network of a customer. The provider server can verify compliance information submitted by the customer using the system management server state hashes collected without communicating with the system management server in the internal network.
A system and method is disclosed for determining a reliability of an online vendor. One or more groups of undesirable emails (for example, spam) are analyzed to determine a prevalence of a known vendor. A reliability indicator may be determined for the vendor based on the identified prevalence of the vendor in the emails. The reliability indicator may then be provided to a remote application for use in assessing the reliability of the vendor.
A method and apparatus for automated display of documentation is disclosed. The method comprises identifying a selected item in a user interface, performing a pattern match of the identified item against a documentation database, and displaying documentation for the identified item found in the documentation database based on the pattern match.
An apparatus and a method for generating a bill of materials for inspection are disclosed. The apparatus for generating a bill of materials for inspection comprises a risk operation module, a data filtering module, and a data outputting module. The risk operation module selects a material risk index, a manufacturer risk index, a laboratory risk index corresponding to a material from the risk database, and decides the risk level according to the material risk index, the manufacturer risk index, and the laboratory risk index. The data filtering module determines whether a material needs to be inspected according to the risk level. The data outputting module selects a material sample from the material, and adds the material sample to the bill of materials for inspection.
A system, method, and computer readable medium for generating an information integration flow design (IIFD). The system includes a processor to receive a conceptual model of the IIFD, having an extract phase, a load phase, and a transformation phase, an extract unit to model an interface between a data source information object and a transformation function based on at least one extract hypercube, a load unit to specify at least one load hypercube and a data warehouse target object, a transformation unit to express one or more steps as a hypercube operation, and a translation unit to generate the IIFD based on the conceptual model. The method includes receiving a conceptual model of the IIFD having an extract phase, a load phase, and a transformation phase. The method generates logical information integration operations based on the conceptual model. A computer readable medium may include instructions to generate the IIFD.
In a method of answering questions and scoring answers, a title and at least one topical field are identified for a document. A field name and field content associated with the topical field is identified, and a title-oriented document is created by combining the title, the field name, and the field content associated with the topical field. For each title-oriented document, a term in the title is matched to previously established categories to produce a title concept identifier. The topical field is synthesized to produce a field concept identifier and a field content concept identifier. A question is received. The question topic term and the question content identifier are used to identify at least one question-matching relation instance. The title concept identifier of each question-matching relation instance is identified as a candidate answer to the question. Each candidate answer and a corresponding answer score is output.
A RFID device includes a substrate, a conductive element, and a RFID chip. The conductive element is coupled to the substrate and defines at least one pathway. The RFID chip includes an integrated circuit, a terminal, and an electrical lead connecting the integrated circuit and the terminal. The terminal is in electrical communication with the conductive element. The RFID chip is positioned so that a first portion of the RFID chip is positioned above the conductive element and a second portion of the RFID chip is positioned above the at least one pathway. Methods are also provided.
An image forming apparatus capable of flexibly controlling whether or not to perform user authentication when a user performs operations related to functions of the apparatus. When a user instructs the apparatus to perform any of operations related to a secure print job which is a print job executed by using a secure print function, when the apparatus is operated in a function-based authentication mode, it is determined whether or not a user-selected function of a plurality of functions including at least a secure printing function for printing data in response to an input of a password requires user authentication. When the secure printing function is specified as the user-selected function and it is determined that the user-selected function does not require user authentication, the user is allowed to use the secure printing function, even if the user is not authenticated.
To analyze an inspection image obtained by taking an image of filter end faces of filter cigarettes horizontally arranged, from an axial direction, and thus inspect an excess cigarette feeding error, there are provided a first judging device that the number of cigarettes according to shape information of the filter end faces obtained from the inspection image, and a second judging device that obtains the centroid positions of the filter end faces from the inspection image, and detects that there is an excess feeding error when difference between a maximum value and a minimum value of the centroid-to-centroid distance of adjacent filter end faces is substantially equal to a previously-known diameter of the filter end face.
A system and method for performing Automatic Target Recognition by combining the outputs of several classifiers. In one embodiment, feature vectors are extracted from radar images and fed to three classifiers. The classifiers include a Gaussian mixture model neural network, a radial basis function neural network, and a vector quantization classifier. The class designations generated by the classifiers are combined in a weighted voting system, i.e., the mode of the weighted classification decisions is selected as the overall class designation of the target. A confidence metric may be formed from the extent to which the class designations of the several classifiers are the same. This system is also designed to handle unknown target types and subsequent re-integration at a later time, effectively, artificially and automatically increasing the training database size.
An object region extraction system, an object region extraction method, and an object region extraction program, including an effectiveness evaluation quantity acquisition unit to acquire an evaluation quantity which increases or decreases when an angle formed by two back projections selected from back projections of one point of an object approach a right angle, wherein the back projections cross each other at a position in three-dimensional space and obtained from respective images, which include the one point and captured by respective m-number of image acquisition units, where m is greater than one, and an object region determination unit to, when the evaluation quantity is equal to or larger than or equal to or smaller than a predetermined value, determine the position to be a region occupied by the object, and output the determination result.
Where the recognition of small characters (e.g., text, numbers or symbols) expressed in substantially large images is desired, the recognition process may be facilitated by identifying a signature or a pattern of marked identifiers (e.g., bar codes) within the image, and determining where such characters are typically located in relation to the signature or pattern of identifiers. Because the recognition of characters within images typically occupies a substantial amount of a computer's processing capacity, focusing a recognition technique on portions where such characters are frequently located within an image that includes the signature or pattern, and not on the entire image, the time required in order to process an image in order to recognize such characters may be markedly reduced.
A biometric authentication device includes: a memory; and a processor coupled to the memory and configured to: determine, when authentication with first biometric information has been successful, whether second biometric information different from the first biometric information is from a user corresponding to the first biometric information using a determining method corresponding to one of a plurality of security levels, the determining method being selected from among a plurality of determining methods based on the one of the plurality of security levels, and register, when the second biometric information has been determined to be from the user, the second biometric information associated with the user.
An exemplary object detection method includes generating feature block components representing an image frame, and analyzing the image frame using the feature block components. For each feature block row of the image frame, feature block components associated with the feature block row are evaluated to determine a partial vector dot product for detector windows that overlap a portion of the image frame including the feature block row, such that each detector window has an associated group of partial vector dot products. The method can include determining a vector dot product associated with each detector window based on the associated group of partial vector dot products, and classifying an image frame portion corresponding with each detector window as an object or non-object based on the vector dot product. Each feature block component can be moved from external memory to internal memory once implementing the exemplary object detection method.
An information processing apparatus includes an input unit, an attention object detection unit, and a calculation unit. The input unit is configured to input a plurality of temporally continuous images taken by an image pickup apparatus. The attention object detection unit is configured to detect an attention object as an attention target from a first image which is an image taken at a first time point out of the plurality of images input. The calculation unit is configured to compare the first image with one or more second images which are one or more images taken at a time point previous to the first time point, to calculate, as a second time point, a time point when the attention object appears in the continuous plurality of images.
A head-mounted video-camera-based eye sensor system and method for measuring palpebral movement is disclosed. The system and method comprise a display that includes at least one display element responsive to palpebral movement information from the eye sensor. The system and method also comprise an electronic interface to a vehicle or powered equipment to transmit the palpebral movement information to the vehicle or powered equipment. The system and method can be used to alert the user, the vehicle, and/or the powered equipment to the fact that a person might be experiencing vertigo, motion sickness, motion intolerance, and/or spatial disorientation.
Systems and methods for grouping documents and/or displaying groupings are described herein. Documents may be grouped by their document character features. Document character features may include distinct character types, character counts, common character counts, character difference counts, missing character counts, and any combination thereof. Document matches may be based on a threshold value compared to a score and/or indicator based on document character features. The computing devices described herein may generate user interfaces for displaying clusters of documents. The clusters of documents may indicate matches between documents based on the document character features.
There is provided an information processing device including a detection unit that detects a face image region in an image, a determination unit that determines a human attribute of at least one face image in the face image region detected by the detection unit, and a face image replacement unit that replaces the at least one face image with a natural face image of another person according to the human attribute determined by the determination unit.
This disclosure concerns methods for evaluating inflammatory cells and modulators of the inflammatory response in tumor tissue and other relevant tissue types. The methods entail: obtaining a tissue sample and processing said tissue sample to produce histologic slides of tissue sections; staining of the tissue sections to identify inflammatory cells and modulators of the inflammatory response; digitizing slides to produce an image of the stained tissue sections; digitally stratifying the tissue sample into tumor and other relevant tissue compartments; and using digital image analysis to quantify cell-based and cell population-based features. The quantification of cell-based and cell population-based features within a tissue compartment of interest is used to develop a summary score of the immune system-tissue compartment of interest interaction. Patient stratification and selection as candidates for a therapeutic approach is ultimately based on the summary score value.
A finger biometric sensing device may include drive circuitry capable of generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and capable of generating a detected signal based upon placement of a finger adjacent the array of finger biometric sensing pixel electrodes. The detected signal may include a relatively large drive signal component and a relatively small sense signal component superimposed thereon. The finger biometric sensing device may also include a gain stage coupled to the array of finger biometric sensing pixel electrodes, and drive signal nulling circuitry coupled to the gain stage capable of reducing the relatively large drive signal component from the detected signal.
A technique for tamper protection in an electronic device is disclosed. A conductive mesh is affixed onto one or more interior surfaces of the outer housing of the device. The mesh includes one or more conductive traces coupled to one or more detectors within the device. The detector can detect an open-circuit or short-circuit condition resulting from an unauthorized attempt to open the housing, and output a signal to trigger an appropriate countermeasure. The electrical contacts along the trace that are monitored can be selected differently from one manufactured unit to the next, and can be selected based on a randomness function. The selection of contacts may be made during or after manufacturing of the device. The mesh can include multiple metal traces that run very close together, in parallel, across one or more interior surfaces of the housing, allowing detection of both open-circuit and short-circuit conditions.
A virtual security coprocessor is created in a first processing system. The virtual security coprocessor is then transferred to a second processing system, for use by the second processing system. For instance, the second processing system may use the virtual security coprocessor to provide attestation for the second processing system. In an alternative embodiment, a virtual security coprocessor from a first processing system is received at a second processing system. After receiving the virtual security coprocessor from the first processing system, the second processing system uses the virtual security coprocessor. Other embodiments are described and claimed.
One feature pertains to a method of implementing a physically unclonable function that includes providing an array of metal-insulator-metal (MIM) devices, where the MIM devices are configured to represent a first resistance state or a second resistance state and a plurality of the MIM devices are initially at the first resistance state. The MIM devices have a random breakdown voltage that is greater than a first voltage and less than a second voltage, where the breakdown voltage represents a voltage that causes the MIM devices to transition from the first resistance state to the second resistance state. The method further includes applying a signal line voltage to the MIM devices to cause a portion of the MIM devices to randomly breakdown and transition from the first resistance state to the second resistance state, the signal line voltage greater than the first voltage and less than the second voltage.
A method and apparatus for selectively publishing user-provided content items to other users is provided. In some instances, the content items are excluded from being rendered to a user according to one or more blocks that block the user from viewing content items provided by certain members. Managing blocks and excluding content is more efficiently achieved through the implementation of a Bloom filter that contains the blocked pairs of users. The Bloom filter can, using few computing resources, be queried to determine if a block does not exist between two users. If the Bloom filter returns an indication that a block might exist, the apparatus determines if a block is stored in an LRU cache of recently retrieved blocks. If the LRU cache does not identify a block, then a call to retrieve one or more blocked pairs is made to a data storage.
Embodiments described herein generally relate to creating an autonomous role-based security system for a database management system, wherein a super user may not always be required. A computer-implemented method is described. The method includes establishing one or more privileges in a database system, each privilege controlling access to an administrative function for the database system. Each privilege is assigned to one or more roles. Each role may always have a minimum set of users with only administrative rights over the role. A request is received from a first user to grant a role to a second user. A database management system determines whether the first user has administrative privileges over the role. If the first user has administrative privileges over the role, the role is granted to the second user. The database system may satisfy the principles of least privilege and separation of duties.
Diversity information associated with a set of advertisement tags is determined. Example ways of determining diversity include determining a list of distinct Uniform Resource Locators, determining a list of distinct domains, and determining whether an advertisement includes one or more dynamic elements. Scans are adaptively performed based on the determined diversity information. Scanning is performed more frequently for advertisement tags having higher associated diversities and scanning is performed less frequently for advertisement tags having lower associated diversities.
A system and method for a secure supervisory control and data acquisition (SCADA) system. Secure SCADA elements (SSEs) have individual system security monitoring and enforcement of policies throughout the SCADA system. And isolation core ensures that a system security monitor monitors and takes appropriate action with respect to untrusted applications that may impact an SSE. The system security server provides policy enforcement on all of the SSEs that exist on the system. New security policies are created that are populated to individual SSEs in the system. Biomorphing algorithms allow for system uniqueness to be derived over time further enhancing security of SSEs.
Technologies are provided in embodiments for receiving policy information associated with at least one security exception, the security exception relating to execution of at least one program, determining an operation associated with the security exception based, at least in part, on the policy information, and causing the operation to be performed, based at least in part, on a determination that the at least one security exception occurred.
Systems and methods are provided for monitoring access of computing resources. Usage rules may be created and stored that define a usage constraint based on actions available to be performed at the computing resources. An authenticator may verify login credentials received from a user and authorize the user to access a computing resource. A request to perform an action at the computing resource may be received, and a usage monitor may apply a usage rule to the requested action. If the requested action violates the usage constraint of the usage rule, the usage monitor may halt performance of the requested action and notify another user of the usage constraint violation. The authenticator may receive and verify another set of login credentials from that other user. In response to successful verification of the additional set of login credentials, the usage monitor may resume performance of the requested action.
To prevent conflicts of interest, an information management system is used to make sure two or more groups are kept apart so that information does not circulate freely between these groups. The system has policies to implement an “ethical wall” to separate users or groups of users. The user or groups of user may be organized in any arbitrary way, and may be in the same organization or different organizations. The two groups (or two or more users) will not be able to access information belonging to the other, and users in one group may not be able to pass information to the other group. The system may manage access to documents, e-mail, files, and other forms of information.
A system and method for preventing piracy of a given software application limits the number of times that such software application is activated. A given software application must be activated in order to become fully functional. The user must provide a unique software identification code, relating to the specific software which the user is attempting to activate, to a remote provider. The remote provider determines the number of times that such specific software has already been activated, and provides an activation code to the user unless the number of activations exceeds a predetermined threshold. Once activated, the software becomes fully operational, and the user is allowed complete access to its functions.
Content screening operations are facilitated in devices that receive a content that is subject to screening obligations. When such a content is received at a device, a watermark extraction record is obtained and accessed to fulfill content screening obligations. Upon the receipt of such an extraction record, verification of the received extraction record is carried out based on a verification rate. If the verification is successful for an extraction record with permissive information, the verification rate is decreased, thereby reducing the processing load of the device. If the verification is unsuccessful, the verification rate is increased, which can adversely affect the processing load of the device.
An information processing apparatus for registering additional information of an image in a storage unit reads additional information items of an input image, sets a check item condition for additional information, matches at least one of the additional information items against a corresponding additional information item registered in the storage unit according to the check item condition, and controls whether to register the additional information items in the storage unit depending on a result of the matching.
Disclosed is a method and system for translating parameterized cells (pcells) that are created using different programming languages. The pcell source code created in a first programming language undergoes a translation process to translate that source code to a second programming language. A validation process is also provided to ensure the correctness of the translations.
A technique for generating pushdown data comprises performing logical pushdown of circuit elements and nets and detecting physical pushdown based on partition boundary crossings. Geometry associated with one logical level may be used as a keep-out region for the same physical layer when generating physical design of a different logical level. The technique may advantageously enable concurrent design in both top-level and low-level physical design phases, thereby reducing overall design cycle time in developing an integrated circuit.
A computing device is described that is configured to display a graphic visualization for modeling an irrigation system, such as a center pivot irrigation system. In an implementation, the computing device includes a memory and a processor communicatively coupled to the memory. The computing device also includes one or modules stored in memory and executable by the processor. The one or more modules are configured to instruct the processor to receive a command for placing one or more representations of a center pivot irrigation system within a graphical representation of a cultivation area and to receive one or more operational parameters of the center pivot irrigation system. The one or more modules are also configured to instruct the processor to model operation of the center pivot irrigation system based upon the one or more operational parameters.