一种控制大型步进梁式板坯加热炉燃烧气氛的方法

    公开(公告)号:CN101561224B

    公开(公告)日:2012-07-25

    申请号:CN200910084435.8

    申请日:2009-05-15

    申请人: 首钢总公司

    IPC分类号: F27D7/06 F27D19/00 C21D9/70

    摘要: 一种控制大型步进梁式板坯加热炉燃烧气氛的方法,属于工业炉燃料燃烧技术领域。加热板坯经过预热段、各个加热段和均热段完成加热和均温过程,在这一过程中加热炉一级、二级计算机控制系统根据从数据库调入的该板坯原始数据自动生成加热工艺,自动设定和控制各段炉温,以残氧分析仪的输出控制值为基础,计算每个燃烧区的空气消耗系数,对整个炉内燃烧气氛随热负荷而变化进行动态跟踪,再根据6个燃烧区的实际空燃比对其进行修正,调节助燃空气和煤气配比,确定合理空气、煤气流量,达到加热工艺要求的炉膛温度。优点在于,能及时定量地为加热炉操作人员提供炉膛内炉气成分变化情况,使加热炉燃烧达到良好状态,同时节能、环保效果显著。

    一种铁水脱磷方法
    12.
    发明授权

    公开(公告)号:CN101831525B

    公开(公告)日:2012-01-25

    申请号:CN201010183470.8

    申请日:2010-05-19

    IPC分类号: C21C7/064

    摘要: 本发明提供了一种铁水脱磷方法,主要针对大型转炉铁水脱磷。采用以下步骤进行:①通过氧枪从顶部向铁水表面供给氧气,供氧强度在0.8-1.1Nm3/t/min范围内变化;②通过转炉上方设置的料斗向铁水中加入以石灰、轻烧白云石、矿石为主体的造渣料进行造渣,成渣后炉渣二元碱度(CaO/SiO2)为1.95-2.0;③通过转炉炉底供气系统向钢水内部供给搅拌气体,供气强度在0.25-0.40Nm3/t/min。本发明利用低碱度炉渣熔点低,铁水温度低易成渣,通过较大矿石用量来促进成渣和供氧,利用低供氧强度吹炼来延长吹炼时间,大底吹强度搅拌实现渣、金间的充分混合,实现去磷,具有脱磷效果好,石灰用量少,脱磷用辅料消耗少,钢渣排放少的优点。

    一种金属材料盐浴过程中相变热的测试方法

    公开(公告)号:CN101532974B

    公开(公告)日:2011-08-17

    申请号:CN200910082519.8

    申请日:2009-04-22

    申请人: 首钢总公司

    IPC分类号: G01N25/02

    摘要: 一种金属材料盐浴过程中相变热的测试方法,属于材料热处理领域。用于盐浴淬火金属材料等温相变热量的测试,该方法先绘制盐浴过程中金属材料温度-时间变化曲线,同时绘制盐浴过程中盐浴介质的温升-时间曲线,利用快速冷却后相变潜热的释放特性确定冷却曲线上的畸变特征点,根据冷却曲线畸变特征点确定金属材料相变开始、相变结束时间以及温降大小。根据整个盐浴过程中盐浴剂温升、盐浴剂的质量、盐浴剂热容来计算整个过程中金属材料和盐浴剂发生的热交换,根据金属材料的重量、热容、温降大小,计算金属材料携带的非相变热,两部分热量的差值就是金属材料相变热量。优点是通过实验方法测试了金属材料盐浴过程中相变热,简单易行,准确度较高。

    一种带钢表面的总残留和残留铁粉的测量方法

    公开(公告)号:CN101354329B

    公开(公告)日:2011-03-02

    申请号:CN200810119815.6

    申请日:2008-09-11

    申请人: 首钢总公司

    IPC分类号: G01N5/02 G01N21/78

    摘要: 本发明属于金属材料检测领域,特别是提供了一种带钢表面的总残留和残留铁粉的测量方法。其特征是采用第一块板的上表面和第二块的上表面,第二块的下表面和第三块的下表面,第三块的上表面和第四块的上表面依次叠放到一起,测量的时候取中间的两块进行检验的取样方式。使用丁酮清洗板面残留物,用镊子夹少量脱脂棉蘸少量丁酮搽拭钢板,将表面残留物刷洗到250ml烧杯中,直到脱脂棉再也搽拭不出黑印为止;用丁酮少量多次清洗脱脂棉及镊子,以确保残留物的准确性。分析时按残留物总量Oil(mg/m2/单面)=(G2-G1)/S及残留铁粉含量计算公式:Fe(mg/S2/单面)=V×C×55.85/1.2×10-1×2×10-1分别计算。本发明优点是能够保证取样不污染钢板的有效面积;并且实验的全程中也不污染钢板有效面积,保证分析结果的准确性。

    一种防止热风炉拱顶晶间应力腐蚀的方法

    公开(公告)号:CN101603108A

    公开(公告)日:2009-12-16

    申请号:CN200910089678.0

    申请日:2009-07-28

    申请人: 首钢总公司

    IPC分类号: C21B9/00

    摘要: 一种防止热风炉拱顶晶间应力腐蚀的方法,属于炼铁热风炉技术领域。其特征在于,将助燃空气温度预热到800~1200℃,与高温烟气混合后喷入热风炉内,与单独射流煤气股混合,实现高温低氧燃烧,有效抑制NOX生成,同时,在热风炉拱顶钢壳和耐火材料内表面喷涂高温防腐涂料,有效防止热风炉拱顶发生晶间应力腐蚀。通过此方法,可以在原热风炉最高风温基础上提高50~100℃的风温承受能力。

    一种控制大型步进梁式板坯加热炉燃烧气氛的方法

    公开(公告)号:CN101561224A

    公开(公告)日:2009-10-21

    申请号:CN200910084435.8

    申请日:2009-05-15

    申请人: 首钢总公司

    IPC分类号: F27D7/06 F27D19/00 C21D9/70

    摘要: 一种控制大型步进梁式板坯加热炉燃烧气氛的方法,属于工业炉燃料燃烧技术领域。加热板坯经过预热段、各个加热段和均热段完成加热和均温过程,在这一过程中加热炉一级、二级计算机控制系统根据从数据库调入的该板坯原始数据自动生成加热工艺,自动设定和控制各段炉温,以残氧分析仪的输出控制值为基础,计算每个燃烧区的空气消耗系数,对整个炉内燃烧气氛随热负荷而变化进行动态跟踪,再根据6个燃烧区的实际空燃比对其进行修正,调节助燃空气和煤气配比,确定合理空气、煤气流量,达到加热工艺要求的炉膛温度。优点在于,能及时定量地为加热炉操作人员提供炉膛内炉气成分变化情况,使加热炉燃烧达到良好状态,同时节能、环保效果显著。

    高炉热风炉燃烧过程的自动控制系统

    公开(公告)号:CN101408314A

    公开(公告)日:2009-04-15

    申请号:CN200810102200.2

    申请日:2008-03-19

    IPC分类号: F23N1/02 F23N5/00

    摘要: 本发明涉及一种高炉热风炉燃烧过程的自动控制系统,属于高炉热风炉自动燃烧控制技术领域。系统首先按照规定的条件对本炉历史燃烧数据自学习,确定本炉最佳的煤气和空气流量及调节阀初始最佳开度,作为下一个燃烧周期初始参数。在正常燃烧阶段,采用模糊控制与自寻优控制相结合的控制方法,以拱顶温度最快的上升为目标,根据燃烧室温度变化,快速寻优空燃比例系数。同时,采用非无差自适应单闭环控制系统,结合模糊控制,自学习和脉冲驱动等方法,有效控制调节阀动作,实现流量的精确快速调节与控制。系统根据废气温度的趋势变化,采用模糊控制算法,控制燃烧节奏。同时,系统全面总结手动燃烧经验,实现整个燃烧过程无人值守的全自动控制。

    钢包烘烤温度的测试方法
    19.
    发明授权

    公开(公告)号:CN101907496B

    公开(公告)日:2012-02-29

    申请号:CN201010248526.3

    申请日:2010-08-09

    申请人: 首钢总公司

    IPC分类号: G01K7/02

    摘要: 一种钢包烘烤温度的测试方法,属于温度测试技术领域。在钢包工作层耐火砖砌筑时,将热电偶预埋入耐火砖接缝处,根据钢包高度和内径大小,在钢包底部、内壁、渣线处分别预埋3-5支。热电偶测温点与工作层耐火砖内立面平齐一致,热电偶沿工作层与永久层之间布线,由钢包底部或包壁顶部引出,热电偶尾部导线与温度显示仪表连接。本发明定制专用精细热电偶:热电偶保护套管外径2-3mm,材料为耐热不锈钢,采用热拉拔工艺制作,套管内电偶丝与套管间填充绝缘材料,预埋入耐火砖不影响钢包砌筑。钢包烘烤过程中实时测量并显示内壁耐火材料的温度,能够精确地控制烘烤器操作与烘烤时间。烘烤结束后,将温度显示仪表与热电偶的连线拆解,方便下次在线烘烤时使用。

    一种优化控制高炉顶燃式热风炉燃烧换向周期的模型

    公开(公告)号:CN102221820A

    公开(公告)日:2011-10-19

    申请号:CN201110075799.7

    申请日:2011-03-28

    申请人: 首钢总公司

    IPC分类号: G05B13/04

    摘要: 一种优化控制高炉顶燃式热风炉燃烧换向周期的模型,属于工业炉窑燃烧技术领域。该模型由热平衡计算模块、传热模拟计算模块和热风炉燃烧换向周期优化模块组成:热平衡计算模块可以定量得出热风炉运行过程中的热量利用情况。采用传热模拟计算模块可以确定热风炉蓄热室在燃烧期和送风期传热量变化情况。热风炉燃烧换向周期优化模块是建立在热平衡计算模块和传热模拟计算模块的基础上,利用该模块优化燃烧参数,得出热风炉最佳燃烧时间和送风时间,这样既可保证热风炉风温满足高炉热风温度需求,又可避免出现由于燃烧时间过长而造成煤气浪费以及热风炉内耐火材料使用寿命的降低等问题。有利于降低能源消耗,减少NOx等污染气体的排放,改善环境。